[en] Imaging with THz radiation has proved an important tool for both fundamental
science and industrial use. Here we review a class of THz imaging implementations, named
coherent lensless imaging, that reconstruct the coherent response of arbitrary samples with a
minimized experimental setup only based on a coherent source and a camera. After discussing
the appropriate sources and detectors to perform them, we detail the fundamental principles and
implementations of THz digital holography and phase retrieval. Despite these techniques owe a
lot to imaging with different wavelengths, innovative concepts are also being developed in the
THz range and are ready to be applied in other spectral ranges. This makes our review useful for
both the THz and imaging communities, and we hope it will foster their interaction.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Physics
Author, co-author :
Valzania, Lorenzo ✱
Zhao, Yuchen ✱; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Rong, Lu
Wang, Dayong
Georges, Marc ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Hack, Erwin; Swiss Federal Laboratories for Materials Science and Technology > Empa > Laboratory for Transport at Nanoscale Interfaces
Zolliker, Peter; Swiss Federal Laboratories for Materials Science and Technology, > Empa > Laboratory for Transport at Nanoscale Interfaces
✱ These authors have contributed equally to this work.
Language :
English
Title :
THz coherent lensless imaging
Publication date :
01 December 2019
Journal title :
Applied Optics
ISSN :
1559-128X
eISSN :
2155-3165
Publisher :
Optical Society of America, Washington, United States - District of Columbia
Special issue title :
Digital Holography and 3D Imaging
Volume :
58
Issue :
34
Pages :
G256-G275
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Région wallonne TERA4ALL; Beijing Nova Program (xx2018072); SNSF (200021_160078/1); NNSFC (61675010)
Funders :
ERDF - European Regional Development Fund NSCF - National Natural Science Foundation of China Région wallonne SNSF - Swiss National Science Foundation
S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
M. Koch, S. Hunsche, P. Schumacher, M. Nuss, J. Feldmann, and J. Fromm, “THz-imaging: a new method for density mapping of wood,” Wood Sci. Technol. 32, 421–427 (1998).
R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” Int. J. Infrared Millim. Waves 28, 363–371 (2007).
P. Zolliker, M. Rüggeberg, L. Valzania, and E. Hack, “Extracting wood properties from structured THz spectra: birefringence and water content,” IEEE Trans. Terahertz Sci. Technol. 7, 722–731 (2017).
J. Wang, J. Zhang, T. Chang, L. Liu, and H.-L. Cui, “Terahertz nondestructive imaging for foreign object detection in glass fibrereinforced polymer composite panels,” Infrared Phys. Technol. 98, 36–44 (2019).
J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379–1386 (2004).
A. Redo-Sanchez, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7, 12665 (2016).
É. Hérault, M. Hofman, F. Garet, and J.-L. Coutaz, “Observation of terahertz beam diffraction by fabrics,” Opt. Lett. 38, 2708–2710 (2013).
A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared Millim. Terahertz Waves 34, 500–518 (2013).
Y. He, P. I. Ku, J. Knab, J. Chen, and A. Markelz, “Protein dynamical transition does not require protein structure,” Phys. Rev. Lett. 101, 178103 (2008).
S. Leinß, T. Kampfrath, K. V. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, “Terahertz coherent control of optically dark paraexcitons in Cu2O,” Phys. Rev. Lett. 101, 246401 (2008).
D. M. Mittleman, “Twenty years of terahertz imaging,” Opt. Express 26, 9417–9431 (2018).
H. Guerboukha, K. Nallappan, and M. Skorobogatiy, “Toward real-time terahertz imaging,” Adv. Opt. Photon. 10, 843–938 (2018).
C. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480–1482 (1988).
M. C. Nuss and J. Orenstein, “Terahertz time-domain spectroscopy,” in Millimeter and Submillimeter Wave Spectroscopy of Solids (Springer, 1998), pp. 7–50.
R. K. May, M. J. Evans, S. Zhong, I. Warr, L. F. Gladden, Y. Shen, and J. A. Zeitler, “Terahertz in-line sensor for direct coating thickness measurement of individual tablets during film coating in real-time,” J. Pharm. Sci. 100, 1535–1544 (2011).
D. M. Mackenzie, P. R. Whelan, P. Bøggild, P. U. Jepsen, A. Redo-Sanchez, D. Etayo, N. Fabricius, and D. H. Petersen, “Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping,” Opt. Express 26, 9220–9229 (2018).
P. Bøggild, D. M. Mackenzie, P. R. Whelan, D. H. Petersen, J. D. Buron, A. Zurutuza, J. Gallop, L. Hao, and P. U. Jepsen, “Mapping the electrical properties of large-area graphene,” 2D Mater. 4, 042003 (2017).
A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17, 3826–3834 (2009).
T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35, 610–637 (2014).
N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 464–472 (2016).
Y. L. Lim, K. Bertling, T. Taimre, T. Gillespie, C. Glenn, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, and A. D. Rakić, “Coherent imaging using laser feedback interferometry with pulsed-mode terahertz quantum cascade lasers,” Opt. Express 27, 10221–10233 (2019).
J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, and P. Mounaix, “Review of terahertz tomography techniques,” J. Infrared Millim. Terahertz Waves 35, 382–411 (2014).
M. Suga, Y. Sasaki, T. Sasahara, T. Yuasa, and C. Otani, “THz phase-contrast computed tomography based on Mach-Zehnder interferometer using continuous-wave source: proof of the concept,” Opt. Express 21, 25389–25402 (2013).
M. Heimbeck, D. Marks, D. Brady, and H. Everitt, “Terahertz interferometric synthetic aperture tomography for confocal imaging systems,” Opt. Lett. 37, 1316–1318 (2012).
E. J. Candès and M. B. Wakin, “An introduction to compressive sampling [a sensing/sampling paradigm that goes against the common knowledge in data acquisition],” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974–976 (2008).
M. Guizar-Sicairos, Methods for Coherent Lensless Imaging and X-Ray Wavefront Measurement (University of Rochester, 2010).
J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
J. M. Rodenburg, “Ptychography and related diffractive imaging methods,” Adv. Imaging Electron Phys. 150, 87–184 (2008).
T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, 2006).
K.-E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging (Springer, 2012), Vol. 171.
L. Valzania, P. Zolliker, and E. Hack, “Topography of hidden objects using THz digital holography with multi-beam interferences,” Opt. Express 25, 11038–11047 (2017).
L. Valzania, P. Zolliker, and E. Hack, “Coherent reconstruction of a textile and a hidden object with terahertz radiation,” Optica 6, 518–523 (2019).
G. P. Gallerano and S. Biedron, “Overview of terahertz radiation sources,” in Proceedings of the Free Electron Laser Conference (FEL) (2004), Vol. 1, pp. 216–221.
J. R. Freeman, H. E. Beere, and D. A. Ritchie, “Generation and detection of terahertz radiation,” in Terahertz Spectroscopy and Imaging, K.-E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, eds. (Springer, 2012), pp. 1–28.
F. Sizov, “Terahertz radiation detectors: the state-of-the-art,” Semicond. Sci. Technol. 33, 123001 (2018).
A. Rogalski, Infrared and Terahertz Detectors (CRC Press, 2018).
A. Crocker, H. A. Gebbie, M. F. Kimmitt, and L. E. S. Mathias, “Stimulated emission in the far infra-red,” Nature 201, 250–251 (1964).
M. Naftaly, Terahertz Metrology (Artech House, 2015).
H. Minamide and H. Ito, “Frequency-agile terahertz-wave generation and detection using a nonlinear optical conversion, and their applications for imaging,” C. R. Phys. 11, 457–471 (2010).
S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
Y. J. Ding, “Progress in terahertz sources based on difference-frequency generation,” J. Opt. Soc. Am. B 31, 2696–2711 (2014).
F. D. J. Brunner, S. H. Lee, O. P. Kwon, and T. Feurer, “THz generation by optical rectification of near-infrared laser pulses in the organic nonlinear optical crystal HMQ-TMS,” Opt. Mater. Express 4, 1586–1592 (2014).
M. Jazbinsek, U. Puc, A. Abina, and A. Zidansek, “Organic crystals for THz photonics,” Appl. Sci. 9, 882 (2019).
X. Xie, J. M. Dai, and X. C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96, 075005 (2006).
X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).
I. Park, “Investigations of the generation of tunable continuous-wave terahertz radiation and its spectroscopic applications,” Ph. D. thesis (Technische Universität Darmstadt, 2007).
J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 38–47 (2011).
X. M. Wang, C. L. Shen, T. Jiang, Z. Q. Zhan, Q. H. Deng, W. H. Li, W. D. Wu, N. Yang, W. D. Chu, and S. Q. Duan, “High-power terahertz quantum cascade lasers with similar to 0.23 W in continuous-wave mode,” AIP Adv. 6, 075210 (2016).
B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
J. Faist, G. Scalari, M. Fischer, and M. Beck, “Terahertz quantum cascade lasers: 10 years of active region and material progresses,” in International Conference on Infrared, Millimeter, and Terahertz Waves (2011), pp. 1–2.
M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scripta 90, 118002 (2015).
S. Y. Jung, Y. F. Jiang, K. Vijayraghavan, A. T. Jiang, F. Demmerle, G. Boehm, X. J. Wang, M. Troccoli, M. C. Amann, and M. A. Belkin, “Recent progress in widely tunable single-mode room temperature terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 21, 134–143 (2015).
Y. Jin, L. Gao, J. Chen, C. Z. Wu, J. L. Reno, and S. Kumar, “High power surface emitting terahertz laser with hybrid second- and fourth-order Bragg gratings,” Nat. Commun. 9, 1407 (2018).
L. Mahler, A. Tredicucci, and M. S. Vitiello, “Quantum cascade laser: a compact, low cost, solid-state source for plasma diagnostics,” J. Instrum. 7, C02018 (2012).
A. A. Danylov, T. M. Goyette, J. Waldman, M. J. Coulombe, A. J. Gatesman, R. H. Giles, X. F. Qian, N. Chandrayan, S. Vangala, K. Termkoa, W. D. Goodhue, and W. E. Nixon, “Coherent imaging at 2.4 THz with a CW quantum cascade laser transmitter,” Proc. SPIE 7601, 760105 (2010).
O. A. Klimenko, Y. A. Mityagin, S. A. Savinov, V. N. Murzin, N. V. Dyakonova, P. Solignac, and W. Knap, “Terahertz wide range tunable cyclotron resonance p-Ge laser,” 16th International Conference on Electron Dynamics in Semiconductors, Optoelectronics and Nanostructures (Edison 16) (2009), Vol. 193.
E. Starikov, P. Shiktorov, and V. Gruzinskis, “Physical mechanisms for terahertz generation,” in Ultrafast Phenomena in Semiconductors (1999), Vol. 297-2, 271–278.
Z. S. Gribnikov, R. R. Bashirov, and V. V. Mitin, “Negative effective mass mechanism of negative differential drift velocity and terahertz generation,” IEEE J. Sel. Top. Quantum Electron. 7, 630–640 (2001).
A. Maestrini, B. Thomas, H. Wang, C. Jung, J. Treuttel, Y. Jin, G. Chattopadhyay, I. Mehdi, and G. Beaudin, “Schottky diode-based terahertz frequency multipliers and mixers,” C. R. Phys. 11, 480–495 (2010).
A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward-wave oscillator,” Appl. Opt. 43, 5637–5646 (2004).
S. Martens, B. Gompf, and M. Dressel, “Characterization of continuous-wave terahertz sources: laser mixing versus backward-wave oscillators,” Appl. Opt. 48, 5490–5496 (2009).
D. Fast, W. Hurlbut, and V. G. Kozlov, “Extending spectral coverage of BWOs combined with frequency multipliers to 2.6 THz,” Proc. SPIE 8261, 82610L (2012).
C.-W. Baik, Y.-M. Son, S. I. Kim, S. C. Jun, J.-S. Kim, J. Hwang, J.-M. Kim, S.-W. Moon, H. J. Kim, J.-K. So, and P. Gun-Sik, “Microfabricated coupled-cavity backward-wave oscillator for terahertz imaging,” in IEEE International Vacuum Electronics Conference (2008), pp. 398–399.
H. J. Cha, Y. U. Jeong, S. H. Park, B. C. Lee, and S. H. Park, “Power spectrum and coherence length measurements of a compact terahertz free-electron laser,” J. Korean Phys. Soc. 47, 798–802 (2005).
J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, “Vacuum electronic high power terahertz sources,” IEEE Trans. Terahertz Sci. Technol. 1, 54–75 (2011).
V. S. Cherkassky, B. A. Knyazev, S. V. Kozlov, V. V. Kubarev, G. N. Kulipanov, A. N. Matveenko, V. M. Popik, D. N. Root, P. D. Rudych, O. A. Shevchenko, A. V. Trifutina, and N. A. Vinokurov, “Terahertz imaging and holography with a high-power free electron laser,” in Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics (2005), Vol. 2, pp. 337–338.
V. Cherkassky, B. Knyazev, V. Kubarev, G. Kulipanov, G. Kuryshev, A. Matveenko, A. Petrov, V. Popik, M. Scheglov, O. Shevchenko, and N. Vinokurov, “Imaging techniques for a high-power THz free electron laser,” Nucl. Instrum. Methods Phys. Res. A 543, 102–109 (2005).
Y. U. Jeong, G. M. Kazakevitch, H. J. Cha, S. H. Park, and B. C. Lee, “Application of a wide-band compact FEL on THz imaging,” Nucl. Instrum. Methods Phys. Res. A 543, 90–95 (2005).
Y. Y. Choporova, B. A. Knyazev, and M. S. Mitkov, “Classical holography in the terahertz range: recording and reconstruction techniques,” IEEE Trans. Terahertz Sci. Technol. 5, 836–844 (2015).
B. Knyazev, M. Dem’yanenko, and D. Esaev, “Terahertz imaging with a 160 × 120 pixel microbolometer 90-fps camera,” in Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics (IEEE, 2007), pp. 360–361.
B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett. 33, 440–442 (2008).
B. N. Behnken, M. Lowe, G. Karunasiri, D. Chamberlain, P. Robrish, and J. Faist, “Detection of 3.4 THz radiation from a quantum cascade laser using a microbolometer infrared camera,” Proc. SPIE 6549, 65490C (2007).
L. Le Noc, B. Tremblay, A. Martel, C. Chevalier, N. Blanchard, M. Morissette, L. Mercier, F. Duchesne, L. Gagnon, P. Couture, F. Lévesque, N. Desnoyers, M. Demers, F. Lamontage, H. Jerominek, and A. Bergeron, “1280 × 960 pixel microscanned infrared imaging module,” Proc. SPIE 7660, 766021 (2010).
M. Georges, “Long-wave infrared digital holography,” in New Techniques in Digital Holography (2015), pp. 219–254.
E. Hack, L. Valzania, G. Gäumann, M. Shalaby, C. P. Hauri, and P. Zolliker, “Comparison of thermal detector arrays for off-axis THz holography and real-time THz imaging,” Sensors 16, 221 (2016).
E. Hack and P. Zolliker, “Terahertz holography for imaging amplitude and phase objects,” Opt. Express 22, 16079–16086 (2014).
P. Zolliker and E. Hack, “THz holography in reflection using a high resolution microbolometer array,” Opt. Express 23, 10957–10967 (2015).
M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5, 13566 (2015).
L. Valzania, T. Feurer, P. Zolliker, and E. Hack, “Terahertz ptychography,” Opt. Lett. 43, 543–546 (2018).
Z. Li, Q. Yan, Y. Qin, W. Kong, G. Li, M. Zou, D. Wang, Z. You, and X. Zhou, “Sparsity-based continuous-wave terahertz lens-free on-chip holography with sub-wavelength resolution,” Opt. Express 27, 702–713 (2019).
N. Oda, “Uncooled bolometer-type terahertz focal plane array and camera for real-time imaging,” C. R. Phys. 11, 496–509 (2010).
M. Dem’yanenko, D. Esaev, V. Ovsyuk, B. Fomin, A. Aseev, B. Knyazev, G. Kulipanov, and N. Vinokurov, “Microbolometer detector arrays for the infrared and terahertz ranges,” J. Opt. Technol. 76, 739–743 (2009).
D. Dufour, L. Marchese, M. Terroux, H. Oulachgar, F. Généreux, M. Doucet, L. Mercier, B. Tremblay, C. Alain, P. Beaupré, N. Blanchard, M. Bolduc, C. Chevalier, D. D’Amato, Y. Desroches, F. Duchesne, L. Gagnon, S. Ilias, H. Jerominek, F. Lagacé, J. Lambert, F. Lamontagne, L. Le Noc, A. Martel, O. Pancrati, J.-E. Paultre, T. Pope, F. Provençal, P. Topart, C. Vachon, S. Verreault, and A. Bergeron,” Review of terahertz technology development at INO,” J. Infrared Millim. Terahertz Wavesc 36, 922–946 (2015).
N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, and T. Sasaki, “Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region,” J. Infrared Millim. Terahertz Waves 36, 947–960 (2015).
J. Oden, J. Meilhan, J. Lalanne-Dera, J.-F. Roux, F. Garet, J.-L. Coutaz, and F. Simoens, “Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature,” Opt. Express 21, 4817–4825 (2013).
F. Simoens, J. Meilhan, S. Gidon, G. Lasfargues, J. L. Dera, J. L. Ouvrier-Buffet, S. Pocas, W. Rabaud, F. Guellec, B. Dupont, S. Martin, and A. C. Simon, “Antenna-coupled microbolometer based uncooled 2D array and camera for 2D real-time terahertz imaging,” Proc. SPIE 8846, 88460O (2013).
M. Sakhno, A. Golenkov, and F. Sizov, “Uncooled detector challenges: millimeter-wave and terahertz long channel field effect transistor and Schottky barrier diode detectors,” J. Appl. Phys. 114, 164503 (2013).
W. Knap and M. Dyakonov, “Field effect transistors for terahertz applications,” in Handbook of Terahertz Technology for Imaging, Sensing and Communications (Elsevier, 2013), pp. 121–155.
N. Dyakonova, D. Coquillat, F. Teppe, W. Knap, J. Suszek, A. Siemion, M. Sypek, D. B. But, P. Sai, I. Yahniuk, G. Cywinski, J. Marczewski, M. Zaborowski, D. Tomaszewski, and P. Zagrajek, “Terahertz vision using field effect transistors detectors arrays,” in 22nd International Microwave and Radar Conference (MIKON) (2018), pp. 711–714.
R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. O. Kenneth, “Active terahertz imaging using Schottky diodes in CMOS: array and 860-GHz pixel,” IEEE J. Solid-State Circuits 48, 2296–2308 (2013).
A. J. Gatesman, A. Danylov, T. M. Goyette, J. C. Dickinson, R. H. Giles, W. Goodhue, J. Waldman, W. E. Nixon, and W. Hoen, “Terahertz behavior of optical components and common materials,” Proc. SPIE 6212, 62120E (2006).
M. C. Kemp, “Explosives detection by terahertz spectroscopy—a bridge too far?” IEEE Trans. Terahertz Sci. Technol. 1, 282–292 (2011).
M. S. Heimbeck, W. R. Ng, D. R. Golish, M. E. Gehm, and H. O. Everitt, “Terahertz digital holographic imaging of voids within visibly opaque dielectrics,” IEEE Trans. Terahertz Sci. Technol. 5, 110–116 (2015).
M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95, 1658–1665 (2007).
Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).
J. Bjarnason, T. Chan, A. Lee, M. Celis, and E. Brown, “Millimeter-wave, terahertz, and mid-infrared transmission through common clothing,” Appl. Phys. Lett. 85, 519–521 (2004).
T. Bowman, Y. Wu, J. Gauch, L. K. Campbell, and M. El-Shenawee, “Terahertz imaging of three-dimensional dehydrated breast cancer tumors,” J. Infrared Millim. Terahertz Waves 38, 766–786 (2017).
S.-H. Ding, Q. Li, Y.-D. Li, and Q. Wang, “Continuous-wave terahertz digital holography by use of a pyroelectric array camera,” Opt. Lett. 36, 1993–1995 (2011).
L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22, 17236–17245 (2014).
M. Wan, I. Muniraj, R. Malallah, L. Zhao, J. P. Ryle, L. Rong, J. J. Healy, D. Wang, and J. T. Sheridan, “Sparsity based terahertz reflective off-axis digital holography,” Proc. SPIE 10233, 102330T (2017).
L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
L. Rong, C. Tang, D. Wang, B. Li, F. Tan, Y. Wang, and X. Shi, “Probe position correction based on overlapped object wavefront cross-correlation for continuous-wave terahertz ptychography,” Opt. Express 27, 938–950 (2019).
H. Huang, L. Rong, D. Wang, W. Li, Q. Deng, B. Li, Y. Wang, Z. Zhan, X. Wang, and W. Wu, “Synthetic aperture in terahertz in-line digital holography for resolution enhancement,” Appl. Opt. 55, A43–A48 (2016).
Q. Deng, W. Li, X. Wang, Z. Li, H. Huang, C. Shen, Z. Zhan, R. Zou, T. Jiang, and W. Wu, “High-resolution terahertz inline digital holography based on quantum cascade laser,” Opt. Eng. 56, 113102 (2017).
M. Yamagiwa, T. Ogawa, T. Minamikawa, D. G. Abdelsalam, K. Okabe, N. Tsurumachi, Y. Mizutani, T. Iwata, H. Yamamoto, and T. Yasui, “Real-time amplitude and phase imaging of optically opaque objects by combining full-field off-axis terahertz digital holography with angular spectrum reconstruction,” J. Infrared Millim. Terahertz Waves 39, 561–572 (2018).
T. Jiang, C. Shen, Z. Zhan, R. Zou, J. Li, L. Fan, T. Xiao, W. Li, Q. Hua Deng, L. Peng, X. Wang, and W. Wu, “Fabrication of 4.4 THz quantum cascade laser and its demonstration in high-resolution digital holographic imaging,” J. Alloys Compd. 771, 106–110 (2019).
M. Humphreys, J. Grant, I. Escorcia-Carranza, C. Accarino, M. Kenney, Y. Shah, K. Rew, and D. Cumming, “Video-rate terahertz digital holographic imaging system,” Opt. Express 26, 25805–25813 (2018).
R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260, 469–473 (2006).
C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
X. Han, W. Shi, L. Hou, M. Xu, H. Liu, and Y. Xu, “Terahertz off-axis digital holography,” in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016), pp. 1–2.
A. Tamminen, J. Ala-Laurinaho, and A. V. Raisanen, “Indirect holographic imaging at 310 GHz,” in European Radar Conference (2008), pp. 168–171.
M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19, 9192–9200 (2011).
G. Hislop, L. Li, and A. Hellicar, “Phase retrieval for millimeter-and submillimeter-wave imaging,” IEEE Trans. Antennas Propag. 57, 286–290 (2009).
H. Huang, D. Wang, W. Li, L. Rong, Z. D. Taylor, Q. Deng, B. Li, Y. Wang, W. Wu, and S. Panezai, “Continuous-wave terahertz multi-plane in-line digital holography,” Opt. Lasers Eng. 94, 76–81 (2017).
Q. Li, S. Ding, Y. Li, K. Xue, and Q. Wang, “Experimental research on resolution improvement in CW THz digital holography,” Appl. Phys. B 107, 103–110 (2012).
J. Hu, Q. Li, and S. Cui, “Research on object-plane constraints and hologram expansion in phase retrieval algorithms for continuous-wave terahertz inline digital holography reconstruction,” Appl. Opt. 53, 7112–7119 (2014).
J. Hu, Q. Li, and Y. Zhou, “Support-domain constrained phase retrieval algorithms in terahertz in-line digital holography reconstruction of a nonisolated amplitude object,” Appl. Opt. 55, 379–386 (2016).
H. Huang, D. Wang, L. Rong, X. Zhou, Z. Li, and Y. Wang, “Application of autofocusing methods in continuous-wave terahertz in-line digital holography,” Opt. Commun. 346, 93–98 (2015).
D. Wang, Y. Zhao, L. Rong, M. Wan, X. Shi, Y. Wang, and J. T. Sheridan, “Expanding the field-of-view and profile measurement of covered objects in continuous-wave terahertz reflective digital holography,” Opt. Eng. 58, 023111 (2019).
H. Huang, D. Wang, L. Rong, S. Panezai, D. Zhang, P. Qiu, L. Gao, H. Gao, H. Zheng, and Z. Zheng, “Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing,” Opt. Commun. 426, 612–622 (2018).
Y. Zhao, J.-F. Vandenrijt, M. Kirkove, and M. P. Georges, “Imaging quality and resolution enhancement by iterative phase retrieval in THz off-axis digital holography,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper Th4B-3.
J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005).
J. Rodenburg, A. Hurst, and A. Cullis, “Transmission microscopy without lenses for objects of unlimited size,” Ultramicroscopy 107, 227–231 (2007).
D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
P. Picart, New Techniques in Digital Holography (Wiley, 2015).
P. Ferraro, A. Wax, and Z. Zalevsky, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis (Springer, 2011), Vol. 46.
P. K. Rastogi and E. Hack, Optical Methods for Solid Mechanics: A Full-Field Approach (Wiley, 2012).
L. Valzania, Coherent Lensless Imaging Techniques Using Terahertz Radiation (University of Bern. Institute of Applied Physics, 2019).
M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20, 1755–1762 (2003).
K. Matsushima, “Formulation of the rotational transformation of wave fields and their application to digital holography,” Appl. Opt. 47, D110–D116 (2008).
R. Mahon, A. Murphy, and W. Lanigan, “Terahertz holographic image reconstruction and analysis,” in Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference and 12th International Conference on Terahertz Electronics (IEEE, 2004), pp. 749–750.
X. Wang, L. Hou, and Y. Zhang, “Continuous-wave terahertz interferometry with multiwavelength phase unwrapping,” Appl. Opt. 49, 5095–5102 (2010).
T. Nguyen, J. Valera, and A. Moore, “Optical thickness measurement with multi-wavelength THz interferometry,” Opt. Lasers Eng. 61, 19–22 (2014).
R. Bamler and P. Hartl, “Synthetic aperture radar interferometry,” Inverse Prob. 14, R1–R54 (1998).
M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient sub-pixel image registration algorithms,” Opt. Lett. 33, 156–158 (2008).
T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98, 233901 (2007).
G. Koren, F. Polack, and D. Joyeux, “Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints,” J. Opt. Soc. Am. A 10, 423–433 (1993).
L. Rong, Y. Li, S. Liu, W. Xiao, F. Pan, and D. Wang, “Iterative solution to twin image problem in in-line digital holography,” Opt. Lasers Eng. 51, 553–559 (2013).
K. Xue, Q. Li, Y.-D. Li, and Q. Wang, “Continuous-wave terahertz inline digital holography,” Opt. Lett. 37, 3228–3230 (2012).
Z. Li, L. Li, Y. Qin, G. Li, D. Wang, and X. Zhou, “Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction,” Opt. Express 24, 21134–21146 (2016).
T. Latychevskaia and H.-W. Fink, “Resolution enhancement in digital holography by self-extrapolation of holograms,” Opt. Express 21, 7726–7733 (2013).
G. Chen and Q. Li, “Markov chain Monte Carlo sampling based terahertz holography image denoising,” Appl. Opt. 54, 4345–4351 (2015).
J. Miao, D. Sayre, and H. Chapman, “Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects,” J. Opt. Soc. Am. A 15, 1662–1669 (1998).
R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005).
G. Hislop, G. C. James, and A. Hellicar, “Phase retrieval of scattered fields,” IEEE Trans. Antennas Propag. 55, 2332–2341 (2007).
P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596–8605 (2006).
N. V. Petrov, V. G. Bespalov, and M. V. Volkov, “Phase retrieval of THz radiation using set of 2D spatial intensity measurements with different wavelengths,” Proc. SPIE 8281, 82810J (2012).
N. V. Petrov, A. N. Galiaskarov, T. Y. Nikolaeva, and V. G. Bespalov, “The features of optimization of a phase retrieval technique in THz frequency range,” Proc. SPIE 8413, 84131T (2012).
L. Valzania, P. Zolliker, and E. Hack, “Coherent terahertz imaging of a textile and a hidden object,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2019), paper Th4B-2.
W. Hoppe, “Diffraction in inhomogeneous primary wave fields. 1. Principle of phase determination from electron diffraction interference,” Acta Crystallogr. A 25, 495–501 (1969).
J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109, 338–343 (2009).
A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494, 68–71 (2013).
A. Maiden, M. Humphry, M. Sarahan, B. Kraus, and J. Rodenburg, “An annealing algorithm to correct positioning errors in ptychography,” Ultramicroscopy 120, 64–72 (2012).
F. Pfeiffer, “X-ray ptychography,” Nat. Photonics 12, 9–17 (2018).
D. F. Gardner, M. Tanksalvala, E. R. Shanblatt, X. Zhang, B. R. Galloway, C. L. Porter, and R. Karl, Jr., C. Bevis, D. E. Adams, H. C. Kapteyn, M. M. Murnane, and G. F. Mancini, “Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source,” Nat. Photonics 11, 259–263 (2017).
O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfeiffer, “Influence of the overlap parameter on the convergence of the ptychographical iterative engine,” Ultramicroscopy 108, 481–487 (2008).
E. H. Tsai, I. Usov, A. Diaz, A. Menzel, and M. Guizar-Sicairos, “X-ray ptychography with extended depth of field,” Opt. Express 24, 29089–29108 (2016).
A. Maiden, D. Johnson, and P. Li, “Further improvements to the ptychographical iterative engine,” Optica 4, 736–745 (2017).
L. Valzania, E. Hack, P. Zolliker, R. Brönnimann, and T. Feurer, “Resolution limits of terahertz ptychography,” Proc. SPIE 10677, 1067720 (2018).
F. Zhang, I. Peterson, J. Vila-Comamala, A. Diaz, F. Berenguer, R. Bean, B. Chen, A. Menzel, I. K. Robinson, and J. M. Rodenburg, “Translation position determination in ptychographic coherent diffraction imaging,” Opt. Express 21, 13592–13606 (2013).
P. Dwivedi, A. Konijnenberg, S. Pereira, and H. Urbach, “An alternative method to correct translation positions in ptychography,” Proc. SPIE 10677, 106772A (2018).
F. Blanchard, J. E. Nkeck, D. Matte, R. Nechache, and D. G. Cooke, “A low-cost terahertz camera,” Appl. Sci. 9, 2531 (2019).
L. E. Marchese, M. Terroux, D. Dufour, M. Bolduc, C. Chevalier, F. Généreux, H. Jerominek, and A. Bergeron, “Case study of concealed weapons detection at stand-off distances using a compact, large field-of-view THz camera,” Proc. SPIE 9083, 90832G (2014).
I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52, A56–A67 (2013).
M. D. Seaberg, B. Zhang, D. F. Gardner, E. R. Shanblatt, M. M. Murnane, H. C. Kapteyn, and D. E. Adams, “Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography,” Optica 1, 39–44 (2014).
A. M. Maiden, M. J. Humphry, and J. Rodenburg, “Ptychographic transmission microscopy in three dimensions using a multi-slice approach,” J. Opt. Soc. Am. A 29, 1606–1614 (2012).
R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
L.-H. Yeh, L. Tian, and L. Waller, “Structured illumination microscopy with unknown patterns and a statistical prior,” Biomed. Opt. Express 8, 695–711 (2017).
A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).