[en] Vaccination against retroviruses is a challenge because of their ability to stably integrate into the host genome, undergo long-term latency in a proportion of infected cells and thereby escape immune response. Since clearance of the virus is almost impossible once infection is established, the primary goal is to achieve sterilizing immunity. Besides efcacy, safety is the major issue since vaccination has been associated with increased infection or reversion to pathogenicity. In this review, we discuss the diferent issues that we faced during the development of an efcient vaccine against bovine leukemia virus (BLV). We summarize the historical failures of inactivated vaccines, the efcacy and safety of a live-attenuated vaccine and the economical constraints of further industrial development.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Abdala, Alejandro
Alvarez, Irene
Brossel, Hélène ; Université de Liège - ULiège > Cancer-Cellular and Molecular Epigenetics
Calvinho, Luis
Carignano, Hugo
Franco, Lautaro
Gazon, Hélène ; Université de Liège - ULiège > Cancer-Cellular and Molecular Epigenetics
Gillissen, Christelle ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Hamaïdia, Malik ; Université de Liège - ULiège > Cancer-Cellular and Molecular Epigenetics
Hoyos, Clotilde ; Université de Liège - ULiège > Cancer-Cellular and Molecular Epigenetics
Jacques, Jean-Rock ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbial, food and biobased technologies
F.R.S.-FNRS - Fonds de la Recherche Scientifique Télévie FAC - Belgian Foundation against Cancer Fondation Léon Fredericq INTA - National Institute of Agriculture Technology CONICET - Consejo Nacional de Investigaciones Científicas y Técnicas
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Barez PY, de Brogniez A, Carpentier A, Gazon H, Gillet N, Gutierrez G, et al. Recent advances in BLV research. Viruses. 2015;7:6080-8.
Gillet N, Florins A, Boxus M, Burteau C, Nigro A, Vandermeers F, et al. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology. 2007;4:18.
Aida Y, Murakami H, Takahashi M, Takeshima S-N. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol. 2013;4:328.
Burny A, Bruck C, Cleuter V, Couez D, Deschamps J, Ghysdael J, et al. Bovine Leukemia Virus, a versatile agent with various pathogenic effects in various animal species. Cancer Res. 1985;45(suppl):4578-83.
Norby B, Bartlett PC, Byrem TM, Erskine RJ. Effect of infection with bovine leukemia virus on milk production in Michigan dairy cows. J Dairy Sci. 2016;99:1-10.
Bartlett PC, Norby B, Byrem TM, Parmelee A, Ledergerber JT, Erskine RJ. Bovine leukemia virus and cow longevity in Michigan dairy herds. J Dairy Sci. 2013;96:1591-7.
Frie MC, Coussens PM. Bovine leukemia virus: A major silent threat to proper immune responses in cattle. Vet Immunol Immunopathol. 2015;163:103-14.
Kuczewski A, Hogeveen H, Orsel K, Wolf R, Thompson J, Spackman E, et al. Economic evaluation of 4 bovine leukemia virus control strategies for Alberta dairy farms. J Dairy Sci. 2019;102:2578-92.
EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare). Scientific opinion on enzootic bovine leukosis. EFSA J. 2015;13(7):4188. https://doi.org/10.2903/j.efsa.2015.4188.
Gutierrez G, Rodríguez SM, De Brogniez A, Gillet N, Golime R, Burny A, et al. Vaccination against δ-retroviruses: the bovine leukemia virus paradigm. Viruses. 2014;6:2416-27.
Rodríguez SM, Florins A, Gillet N, de Brogniez A, Sánchez-Alcaraz MT, Boxus M, et al. Preventive and therapeutic strategies for bovine leukemia virus: lessons for HTLV. Viruses. 2011;3:1210-48.
Panei CJ, Larsen AE, Fuentealba NA, Metz GE, Echeverría MG, Galosi CM, et al. Study of horn flies as vectors of bovine leukemia virus. Open Vet J. 2019;9:33.
Kohara J, Takeuchi M, Hirano Y, Sakurai Y, Takahashi T. Vector control efficacy of fly nets on preventing bovine leukemia virus transmission. J Vet Med Sci. 2018;80:1524-7.
Gillet NA, Gutiérrez G, Rodriguez SM, de Brogniez A, Renotte N, Alvarez I, et al. Massive depletion of bovine leukemia virus proviral clones located in genomic transcriptionally active sites during primary infection. PLoS Pathog. 2013;9:e1003687.
Merezak C, Pierreux C, Adam E, Lemaigre F, Calomme C, Van Lint C, et al. Suboptimal enhancer sequences are required for efficient bovine leukemia virus propagation in vivo: implications for viral latency. J Virol. 2001;75:6977-88.
Juliarena MA, Barrios CN, Ceriani MC, Esteban EN. Hot topic: bovine leukemia virus (BLV)-infected cows with low proviral load are not a source of infection for BLV-free cattle. J Dairy Sci. 2016;99:4586-9.
Hayashi T, Mekata H, SekiguchiI S, Kirino Y, Mitoma S, Honkawa K, et al. Cattle with the BoLA class II DRB30902 allele have significantly lower bovine leukemia proviral loads. J Vet Med Sci. 2017;79:1552-5.
Takeshima SN, Sasaki S, Meripet P, Sugimoto Y, Aida Y. Single nucleotide polymorphisms in the bovine MHC region of Japanese Black cattle are associated with bovine leukemia virus proviral load. Retrovirology. 2017;14:1-7.
Horin P. Biological principles of heredity of and resistance to disease Health traits as selection criteria in breeding programmes. Rev Sci Tech Int Off Epizoot. 1998;17:302-14.
Achachi A, Florins A, Gillet N, Debacq C, Urbain P, Foutsop GM, et al. Valproate activates bovine leukemia virus gene expression, triggers apoptosis, and induces leukemia/lymphoma regression in vivo. Proc Natl Acad Sci USA. 2005;102:10309-14.
Gillet N, Vandermeers F, de Brogniez A, Florins A, Nigro A, François C, et al. Chemoresistance to valproate treatment of bovine leukemia virus-infected sheep. Identification of Improved HDAC Inhibitors. Pathogens. 2012;1:65-82.
Ferrer JF, Piper CE. Role of colostrum and milk in the natural transmission of the bovine leukemia virus. Cancer Res. 1981;41:4406-9.
Portetelle D, Limbach K, Burny A, Mammerickx M, Desmettre P, Riviere M, et al. Recombinant vaccinia virus expression of the bovine leukaemia virus envelope gene and protection of immunized sheep against infection. Vaccine. 1991;9:194-200.
Ohishi K, Suzuki H, Yasutomi Y, Onuma M, Okada K, Numakunai S, et al. Augmentation of Bovine Leukemia Virus (BLV)-Specific Lymphocyte Proliferation Responses in Ruminants by Inoculation with BLV env-Recombinant Vaccinia Virus: their Role in the Suppression of BLV Replication. Microbiol Immunol. 1992;36:1317-23.
Kerkhofs P, Gatot JS, Knapen K, Mammerickx M, Burny A, Portetelle D, et al. Long-term protection against bovine leukaemia virus replication in cattle and sheep. J Gen Virol. 2000;81:957-63.
Usui T, Konnai S, Tajima S, Watarai S, Aida Y, Ohashi K, et al. Protective Effects of Vaccination with Bovine Leukemia Virus (BLV) Tax DNA Against BLV Infection in Sheep. J Vet Med Sci. 2003;65:1201-5.
Willems L, Portetelle D, Kerkhofs P, Chen G, Burny A, Mammerickx M, et al. In vivo transfection of bovine leukemia provirus into sheep. Virology. 1992;189:775-7.
Willems L, Thienpont E, Kerkhofs P, Burny A, Mammerickx M, Kettmann R. Bovine leukemia virus, an animal model for the study of intrastrain variability. J Virol. 1993;67:1086-9.
Pluta A, Albritton LM, Rola-Łuszczak M, Kuźmak J. Computational analysis of envelope glycoproteins from diverse geographical isolates of bovine leukemia virus identifies highly conserved peptide motifs. Retrovirology. 2018;15:2.
Malim MH, Emerman M. HIV-1 sequence variation: drift, shift, and attenuation. Cell. 2001;104:469-72.
Kerkhofs P, Heremans H, Burny A, Kettmann R, Willems L. In vitro and in vivo oncogenic potential of bovine leukemia virus G4 protein. J Virol. 1998;72:2554-9.
Twizere JC, Kerkhofs P, Burny A, Portetelle D, Kettmann R, Willems L. Discordance between bovine leukemia virus tax immortalization in vitro and oncogenicity in vivo. J Virol. 2000;74:9895-902.
de Brogniez A, Bouzar AB, Jacques J-R, Cosse J-P, Gillet N, Callebaut I, et al. Mutation of a single envelope N-linked glycosylation site enhances the pathogenicity of bovine leukemia virus. J Virol. 2015;89:8945-56.
Rous P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med. 1911;13:397-411.
Victoria JG, Wang C, Jones MS, Jaing C, McLoughlin K, Gardner S, et al. Viral nucleic acids in live-attenuated vaccines: detection of minority variants and an adventitious virus. J Virol. 2010;84:6033-40.
Bahassi EM, O'Dea MH, Allali N, Messens J, Gellert M, Couturier M. Interactions of CcdB with DNA gyrase. J Biol Chem. 2002;274:10936-44.
Lawson JS, Salmons B, Glenn WK. Oncogenic viruses and breast cancer: mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma virus (HPV), and Epstein-Barr virus (EBV). Front Oncol. 2018;8:1-37.
Baltzell KA, Shen HM, Krishnamurthy S, Sison JD, Nuovo GJ, Buehring GC. Bovine leukemia virus linked to breast cancer but not coinfection with human papillomavirus: case-control study of women in Texas. Cancer. 2018;124:1342-9.
Martinez Cuesta L, Lendez PA, Nieto Farias MV, Dolcini GL, Ceriani MC. Can bovine leukemia virus be related to human breast cancer? A review of the evidence. J Mammary Gland Biol Neoplasia. 2018;23:101-7.
Buehring GC, Shen HM, Jensen HM, Jin DL, Hudes M, Block G. Exposure to bovine leukemia virus is associated with breast cancer: a case-control study. PLoS ONE. 2015;10:e0134304.
Miller JM, Van der Maaten MJ. Bovine leukosis - its importance to the dairy industry in the United States. J Dairy Sci. 2010;65:2194-203.
Matsumoto M, Ishikawa S, Nakamura Y, Kayaba K, Kajii E. Consumption of dairy products and cancer risks. J Epidemiol. 2007;17:38-44.
Donham KJ, Berg JW, Sawin RS. Epidemiologic relationships of the bovine population and human leukemia in Iowa. Am J Epidemiol. 1980;112:80-92.
McClure H, Keeling M, Custer P, Marshak R, Abt D, Ferrer J. Erythroleukemia in two infant chimpanzees fed milk from cows naturally infected with the bovine C type virus. Cancer Res. 1974;34:2745-57.
Pedersen NC, Johnson L, Birch DTG. Possible immunoenhancement of persistent viremia by feline leukemia virus envelope glycoprotein vaccines in challenge-exposure situations where whole inactivated virus vaccines were protective. Vet Immunol Immunopathol. 1986;11:123-48.
Huisman W, Martina BEE, Rimmelzwaan GF, Gruters RA, Osterhaus ADME. Vaccine-induced enhancement of viral infections. Vaccine. 2009;27:505-12.
Willems L, Hasegawa H, Accolla R, Bangham C, Bazarbachi A, Bertazzoni U, et al. Reducing the global burden of HTLV-1 infection: an agenda for research and action. Antiviral Res. 2017;137:41-8.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.