Hou, T.; Institute of Mineralogy, Leibniz Universtät Hannover, Hannover, 30167, Germany, State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, Beijing, 100083, China
Charlier, Bernard ; Université de Liège - ULiège > Département de géologie > Pétrologie, géochimie endogènes et pétrophysique
Holtz, F.; Institute of Mineralogy, Leibniz Universtät Hannover, Hannover, 30167, Germany
Veksler, I.; GFZ German Research Center for Geosciences, Telegrafenberg, Potsdam, 14473, Germany, Geological Department, Perm State University, Bukireva 15, Perm, 614990, Russian Federation
Zhang, Z.; State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, Beijing, 100083, China
Thomas, R.; GFZ German Research Center for Geosciences, Telegrafenberg, Potsdam, 14473, Germany
Namur, Olivier ; Université de Liège - ULiège > Département de géologie > Pétrologie, géochimie endogènes et pétrophysique
Language :
English
Title :
Immiscible hydrous Fe-Ca-P melt and the origin of iron oxide-apatite ore deposits
Frietsch, R. On the magmatic origin of iron ores of the Kiruna type. Econ. Geol. 73, 478-485 (1978).
Hildebrand, R. S. Kiruna-type deposits; their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada. Econ. Geol. 81, 640-659 (1986).
Nyström, J. O. & Henriquez, F. Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry. Econ. Geol. 89, 820-839 (1994).
Gleason, J. D., Marikos, M. A., Barton, M. D. & Johnson, D. A. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe-P-REE) systems. Geochim. Cosmochim. Acta 64, 1059-1068 (2000).
Naslund, H. R., Henriquez, F., Nyström, J. O., Vivallo, W. & Dobbs, F. M. in Hydrothermal Iron Oxide Copper-gold and Related Deposits: A Global Perspective, Vol. 2 (ed. Porter, T. M.) 207-226 (Porter Geoscience Consultancy Publishing, Adelaide, 2002).
Sillitoe, R. H. & Burrows, D. R. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ. Geol. 97, 1101-1109 (2002).
Chen, H., Clark, A. H. & Kyser, T. K. The Marcona magnetite deposit, Ica, South-Central Peru: a product of hydrous, iron oxide-rich liquids? Econ. Geol. 105, 1441-1456 (2010).
Jonsson, E. et al. Magmatic origin of giant 'Kiruna-type' apatite-iron-oxide ores in Central Sweden. Sci. Rep. 3, 1644 (2013).
Dare, S. A., Barnes, S. J. & Beaudoin, G. Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Miner. Depos. 50, 607-617 (2015).
Knipping, J. L. et al. Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 43, 591-594 (2015).
Tornos, F., Velasco, F. & Hanchar, J. M. Iron-rich liquids, magmatic magnetite, and superheated hydrothermal systems: the El Laco deposit, Chile. Geology 44, 427-430 (2016).
Nyström, J. O., Henríquez, F., Naranjo, J. A. & Nasuland, H. R. Magnetite spherules in pyroclastic iron ore at El Laco, Chile. Am. Miner. 101, 587-595 (2016).
Mungall, J. E., Long, K., Brenan, J. M., Smythe, D. & Naslund, H. R. Immiscible shoshonitic and Fe-P-oxide melts preserved in unconsolidated tephra at El Laco volcano, Chile. Geology 46, 255-258 (2018).
Velasco, F., Tornos, F. & Hanchar, J. M. Immiscible iron-and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): evidence for a magmatic origin for the magnetite deposits. Ore Geol. Rev. 79, 346-366 (2016).
Lindsley, D. & Epler, N. Do Fe-Ti-oxide magmas exist? Probably not! Am. Miner. 102, 2157-2169 (2017).
Lester, G. W., Clark, A. H., Kyser, T. K. & Naslund, H. R. Experiments on liquid immiscibility in silicate liquids with H2O, P, S, F and Cl: implications for natural magmas. Contrib. Miner. Petrol. 166, 329-349 (2013).
Philpotts, A. R. Compositions of immiscible liquids in volcanic rocks. Contrib. Mineral. Petrol. 80, 201-218 (1982).
Charlier, B., Namur, O. & Grove, T. L. Compositional and kinetic controls on liquid immiscibility in ferrobasalt-rhyolite volcanic and plutonic series. Geochim. Cosmochim. Acta 113, 79-93 (2013).
Charlier, B. & Grove, T. L. Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contrib. Mineral. Petrol. 164, 27-44 (2012).
Bogaerts, M. & Schmidt, M. W. Experiments on silicate liquid immiscibility in the system Fe2SiO4-KAlSi3O8-SiO2-CaO-MgO-TiO2-P2O5 and implications for natural magmas. Contrib. Mineral. Petrol. 152, 257-274 (2006).
Ryerson, F. J. & Hess, P. C. Implications of liquid-liquid distribution coefficients to mineral-liquid partitioning. Geochim. Cosmochim. Acta 42, 921-932 (1978).
Longhi, J. Silicate liquid immiscibility in isothermal crystallisation experiments. Proc. Lunar Planet. Sci. Conf. 20, 13-24 (1990).
Hess, P. C., Rutherford, M. J., Guillemette, R. N., Ryerson, F. J. & Tuchfeld, H. A. Residual products of fractional crystallisation of lunar magmas-an experimental study. Proc. Lunar Planet. Sci. Conf. 6, 895-909 (1975).
Rutherford, M. J., Hess, P. C. & Daniel, G. H. Experimental liquid line of descent and liquid immiscibility for basalt 70017. Proc. Lunar Planet. Sci. Conf. 5, 569-583 (1974).
Dixon, S. & Rutherford, M. J. Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: an experimental study. Earth. Planet. Sci. Lett. 45, 45-60 (1979).
Philpotts, A. R. & Doyle, C. D. Effect of magma oxidation state on the extent of silicate liquid immiscibility in a tholeiitic basalt. Am. J. Sci. 283, 967-986 (1983).
Kamenetsky, V. S. et al. Magma chamber-scale liquid immiscibility in the Siberian Traps represented by liquid pools in native iron. Geology 41, 1091-1094 (2013).
Hou, T. et al. Experimental study of liquid immiscibility in the Kiruna-type Vergenoeg iron-fluorine deposit, South Africa. Geochim. Cosmochim. Acta 203, 303-322 (2017).
Namur, O., Charlier, B. & Holness, M. B. Dual origin of Fe-Ti-P gabbros by immiscibility and fractional crystallisation of evolved tholeiitic basalts in the Sept Iles layered intrusion. Lithos 154, 100-114 (2012).
Fischer, L. A. et al. Immiscible iron-and silica-rich liquids in the upper zone of the Bushveld complex. Earth. Planet. Sci. Lett. 443, 108-117 (2016).
Visser, W. & Koster van Groos, A. F. Effect of P2O5 and TiO2 on liquid-liquid equilibria in the system K2O-FeO-Al2O3-SiO2. Am. J. Sci. 279, 970-988 (1979).
Clark, A. H. & Kontak, D. J. Fe-Ti-P oxide melts generated through magma mixing in the Antauta subvolcanic center, Peru: implications for the origin of nelsonite and iron oxide-dominated hydrothermal deposits. Econ. Geol. 99, 377-395 (2004).
Lyons, J. I. Volcanogenic iron oxide deposits, Cerro de Mercado and vicinity, Durango. Econ. Geol. 83, 1886-1906 (1988).
Eslamizadeh, A. Petrology and geochemistry of early Cambrian volcanic rocks hosting the Kiruna-type iron ore in Anomaly 10 of Sechahun, Central Iran. J. Sci. Islamic Repub. Iran. 28, 21-35 (2016).
Jiang, Z. et al. Geology, geochemistry, and geochronology of the zhibo iron deposit in the western Tianshan, NW China: constraints on metallogenesis and tectonic setting. Ore Geol. Rev. 57, 406-424 (2014).
Jiang, Z. et al. Geochemistry and zircon U-Pb age of volcanic rocks from the chagangnuoer and zhibo iron deposits, western Tianshan, and their geological significance. Acta Petrol. Sin. 28, 2074-2088 (2012).
Mathez, E. A., Van Tongeren, J. A. & Schweitzer, J. On the relationships between the Bushveld complex and its felsic roof rocks, part 1: petrogenesis of Rooiberg and related felsites. Contrib. Miner. Petrol. 166, 435-449 (2013).
Zajacz, Z. The effect of melt composition on the partitioning of oxidized sulfur between silicate melts and magmatic volatiles. Geochim. Cosmochim. Acta 158, 223-244 (2015).
Wilke, M. Fe in magma-an overview. Ann. Geophys. 48, 609-617 (2005).
Filiberto, J. et al. Effect of fluorine on near-liquidus phase equilibria of an Fe-Mg rich basalt. Chem. Geol. 312-313, 118-126 (2012).
Lukkari, S. & Holtz, F. Phase relations of a F-enriched peraluminous granite: an experimental study of the Kymi topaz granite stock, southern Finland. Contrib. Miner. Petrol. 153, 273-288 (2007).
Kelley, K. A. & Cottrell, E. Water and the oxidation state of subduction zone magmas. Science 325, 605-607 (2009).
Williams, P. et al. in Economic Geology: One Hundredth Anniversary Volume (eds Hedenquist, J. W., et al.) 371-406 (Society of Economic Geologists, Littleton, 2005).
Hitzman, M., Oreskes, N. & Einaudi, M. Geological characteristics and tectonic setting of proterozoic iron oxide (Cu-U-Au-REE) deposits. Precam. Res. 58, 241-287 (1992).
Carmichael, I. S. E. The redox states of basic and silicic magmas: a reflection of their source regions? Contrib. Mineral. Petrol. 106, 129-141 (1991).
Tornos, F., Velasco, F. & Hanchar, J. M. The magmatic to magmatichydrothermal evolution of the El Laco deposit (Chile) and its implications for the genesis of magnetite-apatite deposits. Econ. Geol. 112, 1595-1628 (2017).
Burgisser, A. & Scaillet, B. Redox evolution of a degassing magma rising to the surface. Nature 445, 194-205 (2007).
Bell, A. S. & Simon, A. Experimental evidence for the alteration of the Fe3 +/ΣFe of silicate melt caused by the degassing of chlorine-bearing aqueous volatiles. Geology 39, 499-502 (2011).
Moussallam, Y. et al. The impact of degassing on the oxidation state of basaltic magmas: a case study of Kīlauea volcano. Earth. Planet. Sci. Lett. 450, 317-325 (2016).
Berndt, J. et al. A combined rapid quench and H2 membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic liquids. Am. Mineral. 87, 1717-1726 (2002).
Taylor, J. R., Wall, V. J. & Pownceby, M. I. The calibration and application of accurate redox sensors. Am. Miner. 77, 284-295 (1992).
Huebner, J. S. & Sato, M. The oxygen fugacity-temperature relationships of manganese and nickel oxide buffers. Am. Miner. 55, 934-952 (1970).
Botcharnikov, R. E., Koepke, J., Holtz, F., McCammon, C. & Wilke, M. The effect of water activity on the oxidation and structural state of Fe in a ferrobasaltic liquid. Geochim. Cosmochim. Acta 69, 5071-5085 (2005).
Botcharnikov, R. E., Almeev, R. R., Koepke, J. & Holtz, F. Phase relations and liquid lines of descent in hydrous ferrobasalt-implications for the Skaergaard intrusion and Columbia river flood basalts. J. Petrol. 49, 1687-1727 (2008).
Burnham, C. W. in Volatiles in Magmas.Reviews in Mineralogy Vol. 30 (eds Carroll, M. R. & Holloway, J. R.) 123-130 (Mineralogical Society of America, 1994).
Almeev, R. R. et al. High-temperature, low-H2O silicic magmas of the yellowstone hotspot: an experimental study of rhyolite from the Bruneau-Jarbidge Eruptive Center, Central Snake River Plain, USA. J. Petrol. 53, 1837-1866 (2012).
Schwab, R. G. & Küstner, D. Die gleichgewichtsfugazitäten technologisch und petrologisch wichtiger sauerstoffpuffer. Neues Jahrb. für Mineral. Abh. 140, 111-142 (1981).
Zhang, C. et al. A practical method for accurate measurement of trace level fluorine in Mg-and Fe-bearing mineral and glass using electron probe microanalysis. Geostand. Geoanal. Res. 40, 351-363 (2016).
Thomas, R. Determination of water contents of granite liquid inclusions by confocal laser Raman microprobe spectroscopy. Am. Mineral. 85, 868-872 (2000).
Thomas, R., Kamenetsky, V. S. & Davidson, P. Laser Raman spectroscopy measurements of water in unexposed glass inclusions. Am. Mineral. 91, 467-470 (2006).