High inter- and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: Generalist foraging as an adaptation to a highly variable environment?
Dehnhard, Nina; Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp (Wilrijk), Belgium, Australian Antarctic Division, Department of the Environment and Energy, Kingston, TAS, Australia, Norwegian Institute for Nature Research – NINA, Trondheim, Norway
Achurch, Helen; Australian Antarctic Division, Department of the Environment and Energy, Kingston, TAS, Australia
Clarke, Judy; Australian Antarctic Division, Department of the Environment and Energy, Kingston, TAS, Australia
Michel, Loïc ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanographie biologique
Southwell, Colin; Australian Antarctic Division, Department of the Environment and Energy, Kingston, TAS, Australia
Sumner, Michael D.; Australian Antarctic Division, Department of the Environment and Energy, Kingston, TAS, Australia
Eens, Marcel; Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Antwerp (Wilrijk), Belgium
Emmerson, Louise; Australian Antarctic Division, Department of the Environment and Energy, Kingston, TAS, Australia
Language :
English
Title :
High inter- and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: Generalist foraging as an adaptation to a highly variable environment?
Publication date :
January 2020
Journal title :
Journal of Animal Ecology
ISSN :
0021-8790
eISSN :
1365-2656
Publisher :
Blackwell Publishing Ltd
Special issue title :
Biologging
Volume :
89
Issue :
1
Pages :
104-119
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Australian Antarctic Science Program
Funders :
FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen UA - University of Antwerp
Aarts, G., MacKenzie, M., McConnell, B., Fedak, M., & Matthiopoulos, J. (2008). Estimating space-use and habitat preference from wildlife telemetry data. Ecography, 31, 140–160. https://doi.org/10.1111/j.2007.0906-7590.05236.x
Araújo, M. S., Bolnick, D. I., & Layman, C. A. (2011). The ecological causes of individual specialisation. Ecology Letters, 14, 948–958. https://doi.org/10.1111/j.1461-0248.2011.01662.x
Araújo, M. S., Guimarães, P. R., Svanbäck, R., Pinheiro, A., Guimarães, P., dos Reis, S. F., & Bolnick, D. I. (2008). Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. Ecology, 89, 1981–1993. https://doi.org/10.1890/07-0630.1
Arrigo, K. R., & Dijken, G. L. V. (2003). Phytoplankton dynamics within 37 Antarctic coastal polynya systems. Journal of Geophysical Research, 108, 3271. https://doi.org/10.1029/2002JC001739
Barbraud, C., Delord, K., & Weimerskirch, H. (2015). Extreme ecological response of a seabird community to unprecedented sea ice cover. Royal Society Open Science, 2, 140456. https://doi.org/10.1098/rsos.140456
Barbraud, C., Rivalan, P., Inchausti, P., Nevoux, M., Rolland, V., & Weimerskirch, H. (2011). Contrasted demographic responses facing future climate change in Southern Ocean seabirds. Journal of Animal Ecology, 80, 89–100. https://doi.org/10.1111/j.1365-2656.2010.01752.x
Bates, D., Maechler, M., & Bolker, B. (2011) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-42. Retrieved from http://CRAN.R-project.org/package=lme4.
Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A., & MacLeod, H. (2004). Determining trophic niche width: A novel approach using stable isotope analysis. Journal of Animal Ecology, 73, 1007–1012.
Beck, J. R. (1969). Food, moult and age of first breeding in the cape pigeon, Daption capensis Linnaeus. British Antarctic Survey Bulletin, 21, 33–44.
Bertolin, M. L., & Casaux, R. (2019). Diet overlap among top predators at the South Orkney Islands, Antarctica. Polar Biology, 42, 371–383. https://doi.org/10.1007/s00300-018-2428-9
Bestley, S., Raymond, B., Gales, N. J., Harcourt, R. G., Hindell, M. A., Jonsen, I. D., … Cox, M. J. (2018). Predicting krill swarm characteristics important for marine predators foraging off East Antarctica. Ecography, 41, 996–1012. https://doi.org/10.1111/ecog.03080
Birt, V. L., Birt, T. P., Goulet, D., Cairns, D. K., & Montevecchi, W. A. (1987). Ashmole's Halo – Direct evidence for prey depletion by a seabird. Marine Ecology Progress Series, 40, 205–208. https://doi.org/10.3354/meps040205
Bivand, R., & Lewin-Koh, N. (2016). maptools: Tools for reading and handling spatial objects. R package version 0.8-39. Retrieved from https://cran.r-project.org/web/packages/maptools/
Bolnick, D. I., Svanbäck, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D., & Forister, M. L. (2003). The ecology of individuals: Incidence and implications of individual specialization. The American Naturalist, 161, 1–28. https://doi.org/10.1086/343878
Bonnet-Lebrun, A.-S., Phillips, R. A., Manica, A., & Rodrigues, A. S. L. (2018). Quantifying individual specialization using tracking data: A case study on two species of albatrosses. Marine Biology, 165, 152. https://doi.org/10.1007/s00227-018-3408-x
Cagnacci, F., Boitani, L., Powell, R. A., & Boyce, M. S. (2010). Animal ecology meets GPS-based radiotelemetry: A perfect storm of opportunities and challenges. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365, 2157–2162.
Calenge, C. (2006). The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling, 197, 516–519. https://doi.org/10.1016/j.ecolmodel.2006.03.017
Carboneras, C. (1992). Order Procellariiformes, Family Procellariidae (Petrels and Shearwaters). In J. del Hoyo, A. Elliott, & J. Sargatal (Eds.), Handbook of the birds of the world (pp. 197–278). Barcelona, Spain: Lynx Editions.
Carneiro, A. P. B., Manica, A., Clay, T. A., Silk, J. R. D., King, M., & Phillips, R. A. (2016). Consistency in migration strategies and habitat preferences of brown skuas over two winters, a decade apart. Marine Ecology Progress Series, 553, 267–281. https://doi.org/10.3354/meps11781
Cavalieri, D. J., & Parkinson, C. L. (2008). Antarctic sea ice variability and trends, 1979–2006. Journal of Geophysical Research, 113, C07004. https://doi.org/10.1029/2007JC004564
Ceia, F., Phillips, R., Ramos, J., Cherel, Y., Vieira, R., Richard, P., & Xavier, J. (2012). Short- and long-term consistency in the foraging niche of wandering albatrosses. Marine Biology, 159, 1581–1591. https://doi.org/10.1007/s00227-012-1946-1
Clavel, J., Julliard, R., & Devictor, V. (2011). Worldwide decline of specialist species: Toward a global functional homogenization? Frontiers in Ecology and Evolution, 9, 222–228. https://doi.org/10.1890/080216
Clay, T. A., Phillips, R. A., Manica, A., Jackson, H. A., & Brooke Mde, L. (2017). Escaping the oligotrophic gyre? The year-round movements, foraging behaviour and habitat preferences of Murphy’s petrels. Marine Ecology Progress Series, 579, 139–155. https://doi.org/10.3354/meps12244
Coplen, T. B. (2011). Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry, 25, 2538–2560. https://doi.org/10.1002/rcm.5129
Cowie, R. J. (1977). Optimal foraging in great tits (Parus major). Nature, 268, 137. https://doi.org/10.1038/268137a0
Dehnhard, N., Eens, M., Sturaro, N., Lepoint, G., Demongin, L., Quillfeldt, P., & Poisbleau, M. (2016). Is individual consistency in body mass and reproductive decisions linked to individual specialization in foraging behavior in a long-lived seabird? Ecology and Evolution, 6, 4488–4501. https://doi.org/10.1002/ece3.2213
Delord, K., Pinet, P., Pinaud, D., Barbraud, C., De Grissac, S., Lewden, A., … Weimerskirch, H. (2016). Species-specific foraging strategies and segregation mechanisms of sympatric Antarctic fulmarine petrels throughout the annual cycle. Ibis, 158, 569–586. https://doi.org/10.1111/ibi.12365
Descamps, S., Tarroux, A., Cherel, Y., Delord, K., Godø, O. R., Kato, A., … Varpe, Ø. (2016). At-sea distribution and prey selection of Antarctic petrels and commercial krill fisheries. PLoS ONE, 11, e0156968. https://doi.org/10.1371/journal.pone.0156968
Emmerson, L., & Southwell, C. (2008). Sea ice cover and its influence on Adélie penguin reproductive performance. Ecology, 89, 2096–2102. https://doi.org/10.1890/08-0011.1
Fieberg, J., & Kochanny, C. O. (2005). Quantifying home-range overlap: The importance of the utilization distribution. Journal of Wildlife Management, 69, 1346–1359. https://doi.org/10.2193/0022-541X(2005)69[1346:QHOTIO]2.0.CO;2
Fontaine, C., Collin, C. L., & Dajoz, I. (2008). Generalist foraging of pollinators: Diet expansion at high density. Journal of Ecology, 96, 1002–1010. https://doi.org/10.1111/j.1365-2745.2008.01405.x
Forero, M. G., Bortolotti, G. R., Hobson, K. A., Donazar, J. A., Bertelloti, M., & Blanco, G. (2004). High trophic overlap within the seabird community of Argentinean Patagonia: A multiscale approach. Journal of Animal Ecology, 73, 789–801. https://doi.org/10.1111/j.0021-8790.2004.00852.x
Freeman, E. A., & Moisen, G. (2008). PresenceAbsence: An R package for presence-absence model analysis. Journal of Statistical Software, 23, 1–31.
Freeman, R., Dennis, T., Landers, T., Thompson, D., Bell, E., Walker, M., & Guilford, T. (2010). Black petrels (Procellaria parkinsoni) patrol the ocean shelf-break: GPS tracking of a vulnerable Procellariiform seabird. PLoS ONE, 5, e9236. https://doi.org/10.1371/journal.pone.0009236
Futuyma, D. J., & Moreno, G. (1988). The evolution of ecological specialization. Annual Review of Ecology and Systematics, 19, 207–233.
Garriga, J., Palmer, J. R. B., Oltra, A., & Bartumeus, F. (2016). Expectation-maximization binary clustering for behavioural annotation. PLoS ONE, 11, e0151984. https://doi.org/10.1371/journal.pone.0151984
Gaston, A. J., Ydenberg, R. C., & Smith, G. E. J. (2007). Ashmole's Halo and population regulation in seabirds. Marine Ornithology, 35, 119–126.
Gladics, A. J., Suryan, R. M., Brodeur, R. D., Segui, L. M., & Filliger, L. Z. (2014). Constancy and change in marine predator diets across a shift in oceanographic conditions in the Northern California Current. Marine Biology, 161, 837–851. https://doi.org/10.1007/s00227-013-2384-4
Guyot, C., Arlettaz, R., Korner, P., & Jacot, A. (2017). Temporal and spatial scales matter: Circannual habitat selection by bird communities in vineyards. PLoS ONE, 12, e0170176. https://doi.org/10.1371/journal.pone.0170176
Harris, J. W., & Woehler, E. J. (2004). Can the important bird area approach improve the Antarctic protected area system? Polar Record, 40, 97–105. https://doi.org/10.1017/S0032247403003322
Hobson, K. A., & Clark, R. G. (1992). Assessing avian diets using stable isotopes I. Turnover of 13C in tissues. Condor, 94, 181–188.
Hodum, P. J. (2002). Breeding biology of high-latitude Antarctic fulmarine petrels (Procellariidae). Journal of Zoology, 256, 139–149. https://doi.org/10.1017/S0952836902000171
Hodum, P. J., & Hobson, K. A. (2000). Trophic relationships among Antarctic fulmarine petrels: Insights into dietary overlap and chick provisioning strategies inferred from stable-isotope (delta N-15 and delta C-13) analyses. Marine Ecology Progress Series, 198, 273–281.
Hodum, P. J., & Weathers, W. W. (2003). Energetics of nestling growth and parental effort in Antarctic fulmarine petrels. Journal of Experimental Biology, 206, 2125–2133. https://doi.org/10.1242/jeb.00394
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427. https://doi.org/10.1101/SQB.1957.022.01.039
Jackson, A. L., Inger, R., Parnell, A. C., & Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x
Jarvis, T., Kelly, N., Kawaguchi, S., van Wijk, E., & Nicol, S. (2010). Acoustic characterisation of the broad-scale distribution and abundance of Antarctic krill (Euphausia superba) off East Antarctica (30–80°E) in January–March 2006. Deep Sea Research Part II: Topical Studies in Oceanography, 57, 916–933. https://doi.org/10.1016/j.dsr2.2008.06.013
Jenouvrier, S., Péron, C., & Weimerskirch, H. (2015). Extreme climate events and individual heterogeneity shape life-history traits and population dynamics. Ecological Monographs, 85, 605–624. https://doi.org/10.1890/14-1834.1
Kassen, R. (2002). The experimental evolution of specialists, generalists, and the maintenance of diversity. Journal of Evolutionary Biology, 15, 173–190. https://doi.org/10.1046/j.1420-9101.2002.00377.x
Krebs, J. (1977). Optimal foraging: Theory and experiment. Nature, 268, 583–584. https://doi.org/10.1038/268583a0
Layman, C. A., & Allgeier, J. E. (2012). Characterizing trophic ecology of generalist consumers: A case study of the invasive lionfish in the Bahamas. Marine Ecology Progress Series, 448, 131–141. https://doi.org/10.3354/meps09511
Layman, C. A., Arrington, D. A., Montaña, C. G., & Post, D. M. (2007). Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology, 88, 42–48. https://doi.org/10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2
Louzao, M., Becares, J., Rodriguez, B., Hyrenbach, K., Ruiz, A., & Arcos, J. (2009). Combining vessel-based surveys and tracking data to identify key marine areas for seabirds. Marine Ecology Progress Series, 391, 183–197. https://doi.org/10.3354/meps08124
MacArthur, R. H. (1958). Population ecology of some warblers of northeastern coniferous forests. Ecology, 39, 599–619. https://doi.org/10.2307/1931600
Marchant, S., & Higgins, P. J. (1990). Handbook of Australian, New Zealand and Antarctic birds. Melbourne, Vic, Australia: Oxford University Press
Massom, R. A., & Stammerjohn, S. E. (2010). Antarctic sea ice change and variability – Physical and ecological implications. Polar Science, 4, 149–186. https://doi.org/10.1016/j.polar.2010.05.001
Morrison, M. L., Marcot, B., & Mannan, W. (2006). Wildlife-habitat relationships: Concepts and applications (3rd ed.). Washington, DC: Island Press.
Navarro, J., Votier, S. C., Aguzzi, J., Chiesa, J. J., Forero, M. G., & Phillips, R. A. (2013). Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE, 8, e62897. https://doi.org/10.1371/journal.pone.0062897
Newsome, S. D., Martinez del Rio, C., Bearhop, S., & Phillips, D. L. (2007). A niche for isotopic ecology. Frontiers in Ecology and the Environment, 5, 429–436. https://doi.org/10.1890/1540-9295(2007)5[429:ANFIE]2.0.CO;2
Nicol, S. (2006). Krill, currents, and sea ice: Euphausia superba and its changing environment. BioScience, 56, 111–120. https://doi.org/10.1641/0006-3568(2006)056[0111:KCASIE]2.0.CO;2
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … Wagner, H. (2018). vegan: Community ecology package. R package version 2.5-3. Retrieved from http://CRAN.R-project.org/package=vegan
Patrick, S. C., Bearhop, S., Grémillet, D., Lescroël, A., Grecian, W. J., Bodey, T. W., … Votier, S. C. (2014). Individual differences in searching behaviour and spatial foraging consistency in a central place marine predator. Oikos, 123, 33–40. https://doi.org/10.1111/j.1600-0706.2013.00406.x
Phillips, R. A., Lewis, S., González-Solís, J., & Daunt, F. (2017). Causes and consequences of individual variability and specialization in foraging and migration strategies of seabirds. Marine Ecology Progress Series, 578, 117–150. https://doi.org/10.3354/meps12217
Pianka, E. R. (1981) Competition and niche theory. In R. M. May (ed.) Theoretical ecology (pp. 167–196). Oxford, UK: Blackwell.
Quillfeldt, P., McGill, R. A. R., Masello, J. F., Poisbleau, M., van Noordwijk, H., Demongin, L., & Furness, R. W. (2009). Differences in the stable isotope signatures of seabird egg membrane and albumen – Implications for non-invasive studies. Rapid Communications in Mass Spectrometry, 23, 3632–3636. https://doi.org/10.1002/rcm.4286
R Core Team (2018). R: A Language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/.
Raymond, B., Lea, M.-A., Patterson, T., Andrews-Goff, V., Sharples, R., Charrassin, J.-B., … Hindell, M. A. (2015). Important marine habitat off east Antarctica revealed by two decades of multi-species predator tracking. Ecography, 38, 121–129. https://doi.org/10.1111/ecog.01021
Scheffer, A., Bost, C. A., & Trathan, P. N. (2012). Frontal zones, temperature gradient and depth characterize the foraging habitat of king penguins at South Georgia. Marine Ecology Progress Series, 465, 281–297. https://doi.org/10.3354/meps09884
Scheffer, A., Trathan, P. N., Edmonston, J. G., & Bost, C.-A. (2016). Combined influence of meso-scale circulation and bathymetry on the foraging behaviour of a diving predator, the king penguin (Aptenodytes patagonicus). Progress in Oceanography, 141, 1–16. https://doi.org/10.1016/j.pocean.2015.10.005
Schoener, T. W. (1974). Resource partitioning in ecological communities. Science, 185, 27–39. https://doi.org/10.1126/science.185.4145.27
Sládeček, M., Vozabulová, E., Šálek, M. E., & Bulla, M. (2019). Diversity of incubation rhythms in a facultatively uniparental shorebird – The northern lapwing. Scientific Reports, 9, 4706. https://doi.org/10.1038/s41598-019-41223-z
Smetacek, V., & Nicol, S. (2005). Polar ocean ecosystems in a changing world. Nature, 437, 362–368. https://doi.org/10.1038/nature04161
Southwell, C., Emmerson, L., Takahashi, A., Barbraud, C., Delord, K., & Weimerskirch, H. (2017). Large-scale population assessment informs conservation management for seabirds in Antarctica and the Southern Ocean: A case study of Adélie penguins. Global Ecology and Conservation, 9, 104–115. https://doi.org/10.1016/j.gecco.2016.12.004
Spreen, G., Kaleschke, L., & Heygster, G. (2008). Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research, 113, C02S03–00. https://doi.org/10.1029/2005JC003384
Stephens, D. W., & Krebs, J. (1986). Foraging theory. Princeton, NJ: Princeton University Press.
Sumner, M. D. (2017). raadtools: Tools for synoptic environmental spatial data. R package version 0.4.0.9001. Retrieved from https://github.com/AustralianAntarcticDivision/raadtools
Switzer, P. V. (1993). Site fidelity in predictable and unpredictable habitats. Evolutionary Ecology, 7, 533–555. https://doi.org/10.1007/BF01237820
Thiebot, J. B., Cherel, Y., Trathan, P. N., & Bost, C. A. (2012). Coexistence of oceanic predators on wintering areas explained by population-scale foraging segregation in space or time. Ecology, 93, 122–130. https://doi.org/10.1890/11-0385.1
Turner, T. F., Collyer, M. L., & Krabbenhoft, T. J. (2010). A general hypothesis-testing framework for stable isotope ratios in ecological studies. Ecology, 91, 2227–2233. https://doi.org/10.1890/09-1454.1
van de Pol, M., Brouwer, L., Ens, B. J., Oosterbeek, K., & Tinbergen, J. M. (2010). Fluctuating selection and the maintenance of individual and sex-specific diet specialization in free-living oystercatchers. Evolution, 64, 836–851. https://doi.org/10.1111/j.1558-5646.2009.00859.x
van Rij, J., Wieland, M., Baayen, R., & van Rijn, H. (2017). itsadug: Interpreting time series and autocorrelated data using GAMMs. R package version 2.3. Retrieved from https://cran.r-project.org/web/packages/itsadug/index.html
Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T., & Weidel, B. C. (2015). Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS ONE, 10, e0116182. https://doi.org/10.1371/journal.pone.0116182
Wakefield, E. D., Cleasby, I. R., Bearhop, S., Bodey, T. W., Davies, R. D., Miller, P. I., … Hamer, K. C. (2015). Long-term individual foraging site fidelity—Why some gannets don't change their spots. Ecology, 96, 3058–3074. https://doi.org/10.1890/14-1300.1
Weimerskirch, H. (2007). Are seabirds foraging for unpredictable resources? Deep Sea Research Part II: Topical Studies in Oceanography, 54, 211–223. https://doi.org/10.1016/j.dsr2.2006.11.013
Weimerskirch, H., Bertrand, S., Silva, J., Bost, C., & Peraltilla, S. (2012). Foraging in Guanay cormorant and Peruvian booby, the major guano-producing seabirds in the Humboldt Current System. Marine Ecology Progress Series, 458, 231–245. https://doi.org/10.3354/meps09752
Weimerskirch, H., Le Corre, M., Jaquemet, S., & Marsac, F. (2005). Foraging strategy of a tropical seabird, the red-footed booby, in a dynamic marine environment. Marine Ecology Progress Series, 288, 251–261. https://doi.org/10.3354/meps288251
Wilson, R. P. (2010). Resource partitioning and niche hyper-volume overlap in free-living Pygoscelid penguins. Functional Ecology, 24, 646–657. https://doi.org/10.1111/j.1365-2435.2009.01654.x
Woehler, E. J., Raymond, B., & Watts, D. J. (2003). Decadal-scale seabird assemblages in Prydz Bay, East Antarctica. Marine Ecology Progress Series, 251, 299–310. https://doi.org/10.3354/meps251299
Wood, S. (2016). package "mgcv". R package version 1.8-17. Retrieved form http://cran.r-project.org/web/packages/mgcv/.