NOTICE: this is the author’s version of a work that was accepted for publication in Computer Methods in Applied Mechanics and Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Methods in Applied Mechanics and Engineering 360 (2020) 112693, DOI: 10.1016/j.cma.2019.112693
All documents in ORBi are protected by a user license.
[en] We develop a Bayesian Inference (BI) of a non-linear multiscale model and material parameters using experimental composite coupons tests as observation data. In particular we consider non-aligned Short Fibers Reinforced Polymer (SFRP) as a composite material system and Mean-Field Homogenization (MFH) as a multiscale model. Although MFH is computationally efficient, when considering non-aligned inclusions, the evaluation cost of a non-linear response for a given set of model and material parameters remains too prohibitive to be coupled with the sampling process required by the BI. Therefore, a Neural-Network-type (NNW) is first trained using the MFH model, and is then used as a surrogate model during the BI process, making the identification process affordable.
H2020 - 685451 - M-ERA.NET 2 - ERA-NET for materials research and innovation
Name of the research project :
The research has been funded by the Walloon Region under the agreement no 1410246-STOMMMAC (CT-INT 2013-03-28), by the Gaitek 2015 programm of the Basque Government, and by the Austrian Research Promotion Agency (ffg) under the agreement no 850392 (STOMMMAC) in the context of the M-ERA.NET Joint Call 2014.
Funders :
DG RDT - Commission Européenne. Direction Générale de la Recherche et de l'Innovation CE - Commission Européenne
Commentary :
Data can be downloaded on https://gitlab.uliege.be/moammm/moammmpublic/tree/master/publicationsData/2020_CMAME_BI_NNW
Matous, K., Geers, M.G., Kouznetsova, V.G., Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J. Comput. Phys. 330:Supplement C (2017), 192–220, 10.1016/j.jcp.2016.10.070.
Eshelby, J.D., The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A 241:1226 (1957), 376–396.
Mori, T., Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21:5 (1973), 571–574.
Hill, R., Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13:2 (1965), 89–101, 10.1016/0022-5096(65)90023-2.
Talbot, D.R.S., Willis, J.R., Variational principles for inhomogeneous non-linear media. IMA J. Appl. Math. 35:1 (1985), 39–54.
Wu, L., Noels, L., Adam, L., Doghri, I., A combined incremental–secant mean–field homogenization scheme with per–phase residual strains for elasto–plastic composites. Int. J. Plast. 51 (2013), 80–102, 10.1016/j.ijplas.2013.06.006.
Camacho, C.W., Tucker, C.L., Yalva c, S., McGee, R.L., Stiffness and thermal expansion predictions for hybrid short fiber composites. Polym. Compos. 11:4 (1990), 229–239, 10.1002/pc.750110406.
Doghri, I., Tinel, L., Micromechanics of inelastic composites with misaligned inclusions: numerical treatment of orientation. Comput. Methods Appl. Mech. Engrg. 195:13 (2006), 1387–1406, 10.1016/j.cma.2005.05.041.
Vincent, M., Giroud, T., Clarke, A., Eberhardt, C., Description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics. Polymer 46:17 (2005), 6719–6725.
Beck, J.L., Katafygiotis, L.S., Updating models and their uncertainties. I: Bayesian statistical framework. J. Eng. Mech. 124 (1998), 455–461.
Most, T., Identification of the parameters of complex constitutive models: least squares minimization vs. Bayesian updating. Straub, D., (eds.) Reliability and Optimization of Structural Systems, 2010.
Madireddy, S., Sista, B., Vemaganti, K., A Bayesian approach to selecting hyperelastic constitutive models of soft tissue. Comput. Methods Appl. Mech. Engrg. 291 (2015), 102–122.
H. Rappel, L. Beex, J. Hale, L. Noels, S. Bordas, A tutorial on Bayesian inference to identify material parameters in solid mechanics, Arch. Comput. Methods Eng.
Lai, T.C., Ip, K., Parameter estimation of orthotropic plates by Bayesian sensitivity analysis. Compos. Struct. 34:1 (1996), 29–42, 10.1016/0263-8223(95)00128-X.
Daghia, F., de Miranda, S., Ubertini, F., Viola, E., Estimation of elastic constants of thick laminated plates within a Bayesian framework. Compos. Struct. 80:3 (2007), 461–473.
Mohamedou, M., Uriondo, K.Z., Chung, C.N., Rappel, H., Beex, L., Adam, L., Major, Z., Wu, L., Noels, L., Bayesian identification of mean-field homogenization model parameters and uncertain matrix behavior in non-aligned short fiber composites. Compos. Struct., 2019 (submitted for publication).
Le, B.A., Yvonnet, J., He, Q.-C., Computational homogenization of nonlinear elastic materials using neural networks. Internat. J. Numer. Methods Engrg. 104:12 (2015), 1061–1084, 10.1002/nme.4953.
Bessa, M., Bostanabad, R., Liu, Z., Hu, A., Apley, D.W., Brinson, C., Chen, W., Liu, W.K., A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput. Methods Appl. Mech. Engrg. 320 (2017), 633–667, 10.1016/j.cma.2017.03.037.
Unger, J.F., Könke, C., Coupling of scales in a multiscale simulation using neural networks. Comput. Struct. 0045-7949, 86(21), 2008, 1994–2003, 10.1016/j.compstruc.2008.05.004.
Fritzen, F., Fernández, M., Larsson, F., On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Front. Mater. 2296-8016, 6, 2019, 75, 10.3389/fmats.2019.00075.
Talbot, D.R.S., Willis, J.R., Bounds and self-consistent estimates for the overall properties of nonlinear composites. IMA J. Appl. Math. 39:3 (1987), 215–240, 10.1093/imamat/39.3.215.
Ponte Castañeda, P., A new variational principle and its application to nonlinear heterogeneous systems. SIAM J. Appl. Math. 52:5 (1992), 1321–1341.
Weber, B., Kenmeugne, B., Clement, J., Robert, J., Improvements of multiaxial fatigue criteria computation for a strong reduction of calculation duration. Comput. Mater. Sci. 15:4 (1999), 381–399, 10.1016/S0927-0256(98)00129-3.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12 (2011), 2825–2830.
Bishop, C.M., Pattern Recognition and Machine Learning Information Science and Statistics, 2006, Springer-Verlag, New York, USA 978-0-387-31073-2.
Haario, H., Saksman, E., Tamminen, J., Adaptive proposal distribution for random walk metropolis algorithm. Comput. Statist. 14:3 (1999), 375–395, 10.1007/s001800050022.
Gilks, W., Richardson, S., Spiegelhalter, D., Markov chain Monte Carlo in practice. Chapman & Hall/CRC Interdisciplinary Statistic, 1995, Chapman and Hall, Weinheim, Germany.
Nouri, H., Modélisation et identification de lois de comportement avec endommagement en fatigue polycyclique de matériaux composite à matrice thermoplastique. (Ph.D. thesis), 2009, Arts et Métiers ParisTech, Metz (France).
Vigliotti, A., Csányi, G., Deshpande, V., Bayesian inference of the spatial distributions of material properties. J. Mech. Phys. Solids 118 (2018), 74–97, 10.1016/j.jmps.2018.05.007.
Rappel, H., Beex, L., Estimating fibres’ material parameter distributions from limited data with the help of Bayesian inference. Eur. J. Mech. A Solids 75 (2019), 169–196.