superconductor-ferromagnet hybrids; magnetic tweezers; superconducting devices
Abstract :
[en] Local polarization of magnetic materials has become a well-known and widely used method for storing binary information. Numerous applications in our daily life such as credit cards, computer hard drives, and the popular magnetic drawing board toy, rely on this principle. In this work, we review the recent advances on the magnetic recording of inhomogeneous magnetic landscapes produced by superconducting films. We summarize the current compelling experimental evidence showing that magnetic recording can be applied for imprinting in a soft magnetic layer the flux trajectory taking place in a superconducting layer at cryogenic temperatures. This approach enables the ex-situ observation at room temperature of the imprinted magnetic flux landscape obtained below the critical temperature of the superconducting state. The undeniable appeal of the proposed technique lies in its simplicity and the potential to improve the spatial resolution, possibly down to the scale of a few vortices.
Disciplines :
Physics
Author, co-author :
Shaw, Gorky ; Université de Liège - ULiège > Physics > Experimental Physics of Nanostructured Materials, Q-MAT, CESAM,
Blanco Alvarez, Sylvain ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Brisbois, Jérémy ; Université de Liège - ULiège > Département de physique > CSL (Centre Spatial de Liège)
Burger, Loïc ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Electronique et microsystèmes
Pinheiro, Lincoln B. L. G.; Universidade Federal de São Carlos, Brazil
Kramer, Roman B.G.; CNRS, Institut Néel, University Grenoble Alpes, 38000 Grenoble, France
Motta, Maycon; Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, Brazi
Aladyshkin, A.Y.; Silhanek, A.V.; Gillijns, W.; Moshchalkov, V.V. Nucleation of superconductivity and vortex matter in superconductor-ferromagnet hybrids. Supercond. Sci. Technol. 2009, 22, 053001, doi: 10.1088/0953-2048/22/5/053001.
Fertig, W.A.; Johnston, D.C.; DeLong, L.E.; McCallum, R.W.; Maple, M.B.; Matthias, B.T. Destruction of Superconductivity at the Onset of Long-Range Magnetic Order in the Compound ErRh4B4. Phys. Rev. Lett.1977, 38, 987-990, doi: 10.1103/physrevlett.38.987.
Ishikawa, M.; Fischer, Ø. Destruction of superconductivity by magnetic ordering in Ho1.2Mo6S8. Solid State Commun. 1977, 23, 37-39, doi: 10.1016/0038-1098(77)90625-1.
Canfield, P.; Bud’ko, S.; Cho, B. Possible co-existence of superconductivity and weak ferromagnetism in ErNi2B2C. Phys. C Supercond. 1996, 262, 249-254, doi: 10.1016/0921-4534(96)00221-3.
Saxena, S.S.; Agarwal, P.; Ahilan, K.; Grosche, F.M.; Haselwimmer, R.K.W.; Steiner, M.J.; Pugh, E.;Walker, I.R.; Julian, S.R.; Monthoux, P.; et al. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2. Nature 2000, 406, 587-592, doi: 10.1038/35020500.
Aoki, D.; Huxley, A.; Ressouche, E.; Braithwaite, D.; Flouquet, J.; Brison, J.P.; Lhotel, E.; Paulsen, C. Coexistence of superconductivity and ferromagnetism in URhGe. Nature 2001, 413, 613, doi: 10.1038/35098048.
Pathak, S.; Shenoy, V.B.; Randeria, M.; Trivedi, N. Competition between Antiferromagnetic and Superconducting States, Electron-Hole Doping Asymmetry, and Fermi-Surface Topology in High Temperature Superconductors. Phys. Rev. Lett. 2009, 102, 027002, doi: 10.1103/PhysRevLett.102.027002.
Devizorova, Z.; Mironov, S.; Buzdin, A. Theory of Magnetic Domain Phases in Ferromagnetic Superconductors. Phys. Rev. Lett. 2019, 122, doi: 10.1103/physrevlett.122.117002.
Tamegai, T.; Nakao, Y.; Nakajima, Y. Shrinkage of magnetic domains in superconductor/ferro-magnet bilayer. J. Phys. Conf. Ser. 2009, 150, 052263, doi: 10.1088/1742-6596/150/5/052263.
Gömöry, F.; Solovyov, M.; Šouc, J.; Navau, C.; Prat-Camps, J.; Sanchez, A. Experimental Realization of a Magnetic Cloak. Science 2012, 335, 1466-1468, doi: 10.1126/science.1218316.
Vélez, M.; Martín, J.; Villegas, J.; Hoffmann, A.; González, E.; Vicent, J.; Schuller, I.K. Superconducting vortex pinning with artificial magnetic nanostructures. J. Magn. Magn. Mater. 2008, 320, 2547-2562, doi: 10.1016/j.jmmm.2008.06.013.
Jafri, H.M.; Ma, X.; Huang, H.; Zhao, C.; Qazi, H.I.A.; Kazmi, S.B.F.; Liu, Z.; Liu, L.; Shi, S.Q.; Li, Y. Current assisted memory effect in superconductor-ferromagnet bilayers: a potential candidate for memristors. Supercond. Sci. Technol. 2019, 32, 095002, doi: 10.1088/1361-6668/ab1dbf.
Berciu, M.; Rappoport, T.G.; Jankó, B. Manipulating spin and charge in magnetic semiconductors using superconducting vortices. Nature 2005, 435, 71-75, doi: 10.1038/nature03559.
Furdyna, J.K. Diluted magnetic semiconductors. J. Appl. Phys. 1988, 64, R29-R64, doi: 10.1063/1.341700.
Chang, A.M.; Hallen, H.D.; Harriott, L.; Hess, H.F.; Kao, H.L.; Kwo, J.; Miller, R.E.; Wolfe, R.; van der Ziel, J.; Chang, T.Y. Scanning Hall probe microscopy. Appl. Phys. Lett. 1992, 61, 1974-1976, doi: 10.1063/1.108334.
Brisbois, J.; Raes, B.; de Vondel, J.V.; Moshchalkov, V.V.; Silhanek, A.V. Determination of the magnetic penetration depth in a superconducting Pb film. J. Appl. Phys. 2014, 115, 103906, doi: 10.1063/1.4868298.
Berciu, M.; Jankó, B. Nanoscale Zeeman Localization of Charge Carriers in Diluted Magnetic Semiconductor-Permalloy Hybrids. Phys. Rev. Lett. 2003, 90, 246804, doi: 10.1103/physrevlett.90.246804.
Redliński, P.;Wojtowicz, T.; Rappoport, T.G.; Libál, A.; Furdyna, J.K.; Jankó, B. Zero- and one-dimensional magnetic traps for quasiparticles in diluted magnetic semiconductors. Phys. Rev. B 2005, 72, 085209, doi: 10.1103/physrevb.72.085209.
Redliński, P.; Rappoport, T.G.; Libal, A.; Furdyna, J.K.; Jankó, B.; Wojtowicz, T. Optical response of a ferromagnetic-diluted magnetic semiconductor hybrid structure. Appl. Phys. Lett. 2005, 86, 113103, doi: 10.1063/1.1883325.
Kruithof, G.H.; van Son, P.C.; Klapwijk, T.M. Interaction between moving flux lines and a two-dimensional electron gas. Phys. Rev. Lett. 1991, 67, 2725-2728, doi: 10.1103/physrevlett.67.2725.
Danckwerts, M.; Goñi, A.R.; Thomsen, C.; Eberl, K.; Rojo, A.G. Enhanced Vortex Damping by Eddy Currents in Superconductor-Semiconductor Hybrids. Phys. Rev. Lett. 2000, 84, 3702-3705, doi: 10.1103/physrevlett.84.3702.
Colauto, F.; Choi, E.; Lee, J.Y.; Lee, S.I.; Patiño, E.J.; Blamire, M.G.; Johansen, T.H.; Ortiz, W.A. Suppression of flux avalanches in superconducting films by electromagnetic braking. Appl. Phys. Lett. 2010, 96, 092512, doi: 10.1063/1.3350681.
Brisbois, J.; Vanderheyden, B.; Colauto, F.; Motta, M.; Ortiz,W.A.; Fritzsche, J.; Nguyen, N.D.; Hackens, B.; Adami, O.A.; Silhanek, A. Classical analogy for the deflection of flux avalanches by a metallic layer. New J. Phys. 2014, 16, 103003, doi: 10.1088/1367-2630/16/10/103003.
Brisbois, J.; Gladilin, V.N.; Tempere, J.; Devreese, J.T.; Moshchalkov, V.V.; Colauto, F.; Motta, M.; Johansen, T.H.; Fritzsche, J.; Adami, O.A.; et al. Flux penetration in a superconducting film partially capped with a conducting layer. Phys. Rev. B 2017, 95, 094506, doi: 10.1103/physrevb.95.094506.
Bael, M.J.V.; Temst, K.; Moshchalkov, V.V.; Bruynseraede, Y. Magnetic properties of submicron Co islands and their use as artificial pinning centers. Phys. Rev. B 1999, 59, 14674-14679, doi: 10.1103/physrevb.59.14674.
Snezhko, A.; Prozorov, T.; Prozorov, R. Magnetic nanoparticles as efficient bulk pinning centers in type-II superconductors. Phys. Rev. B 2005, 71, 024527, doi: 10.1103/physrevb.71.024527.
Garshelis, I.J.; Tollens, S.P.L.; Kari, R.J.; Vandenbossche, L.P.; Dupré, L.R. Drag force measurement: A means for determining hysteresis loss. J. Appl. Phys. 2006, 99, 08D910, doi: 10.1063/1.2172583.
Piramanayagam, S.N. Perpendicular recording media for hard disk drives. J. Appl. Phys. 2007, 102, 011301, doi: 10.1063/1.2750414.
Stoner, E.C.; Wohlfarth, E.P. A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys. Philos. Trans. R. Soc. A 1948, 240, 599-642, doi: 10.1098/rsta.1948.0007.
Bespalov, A.A.; Melʼnikov, A.S.; Buzdin, A.I. Magnon radiation by moving Abrikosov vortices in ferromagnetic superconductors and superconductor-ferromagnet multilayers. Phys. Rev. B 2014, 89, 054516, doi: 10.1103/physrevb.89.054516.
Bulaevskii, L.N.; Hruška, M.; Maley, M.P. Spectroscopy of Magnetic Excitations in Magnetic Superconductors Using Vortex Motion. Phys. Rev. Lett. 2005, 95, 207002, doi: 10.1103/physrevlett.95.207002.
Lin, S.Z.; Bulaevskii, L.N. Enhancement of critical current density in superconducting/magnetic multilayers with slow magnetic relaxation dynamics and large magnetic susceptibility. Phys. Rev. B 2012, 86, 064523, doi: 10.1103/physrevb.86.064523.
Ivlev, B.I.; Mejía-Rosales, S.; Kunchur, M.N. Cherenkov resonances in vortex dissipation in superconductors. Phys. Rev. B 1999, 60, 12419-12423, doi: 10.1103/physrevb.60.12419.
Bulaevskii, L.N.; Chudnovsky, E.M. Sound generation by the vortex flow in type-II superconductors. Phys. Rev. B 2005, 72, 094518, doi: 10.1103/physrevb.72.094518.
Larkin, A.I.; Ovchinnikov, Y.N. Nonlinear conductivity of superconductors in the mixed state. Sov. J. Exp. Theor. Phys. 1975, 41, 960.
McCord, J. Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D Appl. Phys. 2015, 48, 333001, doi: 10.1088/0022-3727/48/33/333001.
Jooss, C.; Albrecht, J.; Kuhn, H.; Leonhardt, S.; Kronmüller, H. Magneto-optical studies of current distributions in high-Tc superconductors. Rep. Prog. Phys. 2002, 65, 651-788, doi: 10.1088/0034-4885/65/5/202.
Johansen, T.H.; Shantsev, D.V. (Eds.) Magneto-Optical Imaging; Springer Science + Business Media: New York, NY, USA, 2004, doi: 10.1007/978-94-007-1007-8.
Goa, P.; Hauglin, H.; Olsen, Å.A.; Baziljevich, M.; Johansen, T. Magneto-optical imaging setup for single vortex observation. Rev. Sci. Instrum. 2003, 74, 141-146, doi: 10.1063/1.1525875.
Koblischka, M.; Wijngaarden, R. Magneto-optical investigations of superconductors. Supercond. Sci. Technol.1995, 8, 199, doi: 10.1088/0953-2048/8/4/002.
Bending, S.J. Local magnetic probes of superconductors. Adv. Phys. 1999, 48, 449-535, doi: 10.1080/000187399243437.
Goa, P.E.; Hauglin, H.; Baziljevich, M.; Il’yashenko, E.; Gammel, P.L.; Johansen, T.H. Real-time magneto-optical imaging of vortices in superconducting NbSe2. Supercond. Sci. Technol. 2001, 14, 729-731, doi: 10.1088/0953-2048/14/9/320.
Golubchik, D.; Polturak, E.; Koren, G.; Lipson, S.G. A high resolution magneto-optical system for imaging of individual magnetic flux quanta. Opt. Express 2009, 17, 16160-16165, doi: 10.1364/oe.17.016160.
Veshchunov, I.S.; Magrini,W.; Mironov, S.V.; Godin, A.G.; Trebbia, J.B.; Buzdin, A.I.; Tamarat, P.; Lounis, B. Optical manipulation of single flux quanta. Nat. Commun. 2016, 7, 12801, doi: 10.1038/ncomms12801.
Johansen, T.H.; Baziljevich, M.; Shantsev, D.V.; Goa, P.E.; pe rin, Y.M.G.; Kang,W.N.; Kim, H.J.; Choi, E.M.; Kim, M.S.; Lee, S.I. Dendritic magnetic instability in superconducting MgB2 films. Europhys. Lett. (EPL)2002, 59, 599-605, doi: 10.1209/epl/i2002-00146-1.
Brisbois, J.; Motta, M.; Avila, J.I.; Shaw, G.; Devillers, T.; Dempsey, N.M.; Veerapandian, S.K.P.; Colson, P.; Vanderheyden, B.; Vanderbemden, P.; et al. Imprinting superconducting vortex footsteps in a magnetic layer. Sci. Rep. 2016, 6, 27159, doi: 10.1038/srep27159.
Lopes, R.F.; Carmo, D.; Colauto, F.; Ortiz,W.A.; de Andrade, A.M.H.; Johansen, T.H.; Baggio-Saitovitch, E.; Pureur, P. Spin texture on top of flux avalanches in Nb/Al2O3/Co thin film heterostructures. J. Appl. Phys.2017, 121, 013905, doi: 10.1063/1.4973529.
Schütz, G.;Wagner,W.;Wilhelm,W.; Kienle, P.; Zeller, R.; Frahm, R.; Materlik, G. Absorption of circularly polarized x rays in iron. Phys. Rev. Lett. 1987, 58, 737-740, doi: 10.1103/PhysRevLett.58.737.
Stahl, C.; Audehm, P.; Gräfe, J.; Ruoß, S.; Weigand, M.; Schmidt, M.; Treiber, S.; Bechtel, M.; Goering, E.; Schütz, G.; et al. Detecting magnetic flux distributions in superconductors with polarized X rays. Phys. Rev. B 2014, 90, 104515, doi: 10.1103/PhysRevB.90.104515.
Stahl, C.; Ruoß, S.; Weigand, M.; Bechtel, M.; Schütz, G.; Albrecht, J. Low temperature X-ray imaging of magnetic flux patterns in high temperature superconductors. J. Appl. Phys. 2015, 117, 17D109, doi: 10.1063/1.4907764.
Ruoß, S.; Stahl, C.; Weigand, M.; Schütz, G.; Albrecht, J. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy. Appl. Phys. Lett. 2015, 106, 022601, doi: 10.1063/1.4905658.
Palau, A.; Valencia, S.; Del-Valle, N.; Navau, C.; Cialone, M.; Arora, A.; Kronast, F.; Tennant, D.A.; Obradors, X.; Sanchez, A.; et al. Encoding Magnetic States in Monopole-Like Configurations Using Superconducting Dots. Adv. Sci. 2016, 3, 1600207, doi: 10.1002/advs.201600207.
Betzig, E.; Trautman, J.K.; Wolfe, R.; Gyorgy, E.M.; Finn, P.L.; Kryder, M.H.; Chang, C.H. Near-field magneto-optics and high density data storage. Appl. Phys. Lett. 1992, 61, 142-144. doi: 10.1063/1.108198.
Grigorieva, I.V. Magnetic flux decoration of type-II superconductors. Supercond. Sci. Technol. 1994, 7, 161-176, doi: 10.1088/0953-2048/7/4/001.
Fasano, Y.; Menghini, M. Magnetic-decoration imaging of structural transitions induced in vortex matter. Supercond. Sci. Technol. 2008, 21, 023001, doi: 10.1088/0953-2048/21/02/023001.
Harada, K.; Matsuda, T.; Kasai, H.; Bonevich, J.E.; Yoshida, T.; Kawabe, U.; Tonomura, A. Vortex configuration and dynamics in Bi2Sr1.8CaCu2Ox thin films by Lorentz microscopy. Phys. Rev. Lett.1993, 71, 3371-3374, doi: 10.1103/PhysRevLett.71.3371.
Pietzsch, O.; Kubetzka, A.; Haude, D.; Bode, M.;Wiesendanger, R. A low-temperature ultrahigh vacuum scanning tunneling microscope with a split-coil magnet and a rotary motion stepper motor for high spatial resolution studies of surface magnetism. Rev. Sci. Instrum. 2000, 71, 424-430, doi: 10.1063/1.1150218.
Kirtley, J.R. Fundamental studies of superconductors using scanning magnetic imaging. Rep. Prog. Phys.2010, 73, 126501, doi: 10.1088/0034-4885/73/12/126501.
Finkler, A.; Segev, Y.; Myasoedov, Y.; Rappaport, M.L.; Ne’eman, L.; Vasyukov, D.; Zeldov, E.; Huber, M.E.; Martin, J.; Yacoby, A. Self-Aligned Nanoscale SQUID on a Tip. Nano Lett. 2010, 10, 1046-1049, doi: 10.1021/nl100009r.
Acosta, V.M.; Bouchard, L.S.; Budker, D.; Folman, R.; Lenz, T.; Maletinsky, P.; Rohner, D.; Schlussel, Y.; Thiel, L. Color Centers in Diamond as Novel Probes of Superconductivity. J. Supercond. Novel Magn. 2018, 32, 85-95, doi: 10.1007/s10948-018-4877-3.
Shaw, G.; Brisbois, J.; Pinheiro, L.B.G.L.; Müller, J.; Blanco Alvarez, S.; Devillers, T.; Dempsey, N.M.; Scheerder, J.E.; Van de Vondel, J.; Melinte, S.; et al. Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures. Rev. Sci. Instrum. 2018, 89, 023705, doi: 10.1063/1.5016293.
Colauto, F.; do Carmo, D.; de Andrade, A.M.H.; Oliveira, A.A.M.; Ortiz, W.A.; Galperin, Y.M.; Johansen, T.H. Anisotropic Flux Penetration in Superconducting Nb Films With Frozen-in In-plane Magnetic Fields. IEEE Trans. Appl. Supercond. 2019, 29, 1-5, doi: 10.1109/tasc.2019.2898092.
Abrikosov, A. Fundamentals of the Theory of Metals; North Holland: Amsterdam, The Netherlands, 1988.
Engel-Herbert, R.; Hesjedal, T. Calculation of the magnetic stray field of a uniaxial magnetic domain. J. Appl. Phys. 2005, 97, 074504, doi: 10.1063/1.1883308.
Gil, W.; Görlitz, D.; Horisberger, M.; Kötzler, J. Magnetoresistance anisotropy of polycrystalline cobalt films: Geometrical-size and domain effects. Phys. Rev. B 2005, 72, 134401, doi: 10.1103/PhysRevB.72.134401.
Cardarelli, F. Materials Handbook: A Concise Desktop Reference, 2nd ed.; Springer: London, UK, 2008, doi: 10.1007/978-1-84628-669-8.
Hindmarch, A.T.; Kinane, C.J.; MacKenzie, M.; Chapman, J.N.; Henini, M.; Taylor, D.; Arena, D.A.; Dvorak, J.; Hickey, B.J.; Marrows, C.H. Interface Induced Uniaxial Magnetic Anisotropy in Amorphous CoFeB Films on AlGaAs(001). Phys. Rev. Lett. 2008, 100, 117201, doi: 10.1103/physrevlett.100.117201.
Simmendinger, J.; Ruoss, S.; Stahl, C.; Weigand, M.; Gräfe, J.; Schütz, G.; Albrecht, J. Transmission X-ray microscopy at low temperatures: Irregular supercurrent flow at small length scales. Phys. Rev. B 2018, 97, 134515, doi: 10.1103/PhysRevB.97.134515.
Suszka, A.K.; Gliga, S.; Warnicke, P.; Wintz, S.; Saha, S.; Charipar, K.M.; Kim, H.; Wohlhüter, P.; Kirk, E.; Finizio, S.; et al. Observation of the out-of-plane magnetization in a mesoscopic ferromagnetic structure superjacent to a superconductor. Appl. Phys. Lett. 2018, 113, 162601, doi: 10.1063/1.5051653.
Tannous, C.; Comstock, R.L., Magnetic Information-Storage Materials. In Springer Handbook of Electronic and Photonic Materials; Kasap, S.; Capper, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; p. 1, doi: 10.1007/978-3-319-48933-9_49.
Akhter, M.A.; Mapps, D.J.; Tan, Y.Q.M.; Petford-Long, A.; Doole, R. Thickness and grain-size dependence of the coercivity in permalloy thin films. J. Appl. Phys. 1997, 81, 4122-4124, doi: 10.1063/1.365100.
Dulal, R.P.; Dahal, B.R.; Forbes, A.; Pegg, I.L.; Philip, J. Large magnetization and high Curie temperature in highly disordered nanoscale Fe2CrAl thin films. J. Magn. Magn. Mater. 2017, 423, 314-317, doi: 10.1016/j.jmmm.2016.09.130.
Jensen, P.J.; Dreyssé, H.; Bennemann, K.H. Calculation of the Film-Thickness-Dependence of the Curie Temperature in Thin Transition Metal Films. Europhys. Lett. (EPL) 1992, 18, 463-468, doi: 10.1209/0295-5075/18/5/015.
Redjdal, M.; Giusti, J.; Ruane, M.F.; Humphrey, F.B. Thickness dependent wall mobility in thin Permalloy films. J. Appl. Phys. 2002, 91, 7547, doi: 10.1063/1.1456403.
Katsnelson, M.I.; Irkhin, V.Y.; Chioncel, L.; Lichtenstein, A.I.; de Groot, R.A. Half-metallic ferromagnets: From band structure to many-body effects. Rev. Mod. Phys. 2008, 80, 315-378, doi: 10.1103/revmodphys.80.315.
Tokura, Y.; Yasuda, K.; Tsukazaki, A. Magnetic topological insulators. Nat. Revi. Phys. 2019, 1, 126-143, doi: 10.1038/s42254-018-0011-5.
Dulal, R.P.; Dahal, B.R.; Forbes, A.; Bhattarai, N.; Pegg, I.L.; Philip, J. Weak localization and small anomalous Hall conductivity in ferromagnetic Weyl semimetal Co2TiGe. Sci. Rep. 2019, 9, 3342.