BONHOMME, Vincent ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
STAQUET, Cécile ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
Montupil, Javier ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
DEFRESNE, Aline ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
KIRSCH, Murielle ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Service d'anesthésie - réanimation
Martial, Charlotte ; Université de Liège - ULiège > Consciousness-Coma Science Group
VANHAUDENHUYSE, Audrey ; Centre Hospitalier Universitaire de Liège - CHU > Département d'Anesthésie et réanimation > Centre interdisciplinaire d'algologie
Chatelle, Camille ; Université de Liège - ULiège > Consciousness-Coma Science Group
Raimondo, Federico ; Université de Liège - ULiège > Consciousness-Coma Science Group
Demertzi, Athina ; Université de Liège - ULiège > Consciousness-Physiology of Cognition
BODART, Olivier ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de neurologie
LAUREYS, Steven ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Centre intégré pluridisc. étude cerveau-cognition-conscience
Gosseries, Olivia ; Université de Liège - ULiège > Consciousness-Coma Science Group
Abdallah C. G., De Feyter H. M., Averill L. A., Jiang L., Averill C. L., Chowdhury G. M. I.. (2018). The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 43, 2154–2160. 10.1038/s41386-018-0136-329977074
Agarwal S., Stamatakis E. A., Geva S., Warburton E. A., (2016). Dominant hemisphere functional networks compensate for structural connectivity loss to preserve phonological retrieval with aging. Brain Behav. 6:e00495. 10.1002/brb3.49527688934
Akeju O., Brown E. N., (2017). Neural oscillations demonstrate that general anesthesia and sedative states are neurophysiologically distinct from sleep. Curr. Opin. Neurobiol. 44, 178–185. 10.1016/j.conb.2017.04.01128544930
Alkire M. T., Gruver R., Miller J., McReynolds J. R., Hahn E. L., Cahill L., (2008). Neuroimaging analysis of an anesthetic gas that blocks human emotional memory. Proc. Natl. Acad. Sci. U S A 105, 1722–1727. 10.1073/pnas.071165110518227504
Alkire M. T., Haier R. J., Barker S. J., Shah N. K., Wu J. C., Kao Y. J., (1995). Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology 82, 393–403. 10.1097/00000542-199502000-000107856898
Alonso L. M., Solovey G., Yanagawa T., Proekt A., Cecchi G. A., Magnasco M. O., (2019). Single-trial classification of awareness state during anesthesia by measuring critical dynamics of global brain activity. Sci. Rep. 9:4927. 10.1038/s41598-019-41345-430894626
Aubinet C., Murphy L., Bahri M. A., Larroque S. K., Cassol H., Annen J.. (2018). Brain, behavior, and cognitive interplay in disorders of consciousness: a multiple case study. Front. Neurol. 9:665. 10.3389/fneur.2018.0066530154755
Barttfeld P., Uhrig L., Sitt J. D., Sigman M., Jarraya B., Dehaene S., (2015). Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl. Acad. Sci. U S A 112, 887–892. 10.1073/pnas.141803111225561541
Bayne T., Hohwy J., Owen A. M., (2016). Are there levels of consciousness? Trends Cogn. Sci. 20, 405–413. 10.1016/j.tics.2016.03.00927101880
Bekinschtein T. A., Dehaene S., Rohaut B., Tadel F., Cohen L., Naccache L., (2009). Neural signature of the conscious processing of auditory regularities. Proc. Natl. Acad. Sci. U S A 106, 1672–1677. 10.1073/pnas.080966710619164526
Bodart O., Gosseries O., Wannez S., Thibaut A., Annen J., Boly M.. (2017). Measures of metabolism and complexity in the brain of patients with disorders of consciousness. Neuroimage Clin. 14, 354–362. 10.1016/j.nicl.2017.02.00228239544
Boly M., Massimini M., Tsuchiya N., Postle B. R., Koch C., Tononi G., (2017). Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence. J. Neurosci. 37, 9603–9613. 10.1523/JNEUROSCI.3218-16.201728978697
Boly M., Moran R., Murphy M., Boveroux P., Bruno M.-A., Noirhomme Q.. (2012). Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J. Neurosci. 32, 7082–7090. 10.1523/JNEUROSCI.3769-11.201222593076
Bonhomme V., Boveroux P., Vanhaudenhuyse A., Hans P., Brichant J. F., Jaquet O.. (2011). Linking sleep and general anesthesia mechanisms: this is no walkover. Acta Anaesthesiol. Belg. 62, 161–171. 22145259
Bonhomme V., Fiset P., Meuret P., Backman S., Plourde G., Paus T.. (2001). Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. J. Neurophysiol. 85, 1299–1308. 10.1152/jn.2001.85.3.129911247998
Bonhomme V., Maquet P., Phillips C., Plenevaux A., Hans P., Luxen A.. (2008). The effect of clonidine infusion on distribution of regional cerebral blood flow in volunteers. Anesth. Analg. 106, 899–909. 10.1213/ane.0b013e318161968518292438
Bonhomme V., Vanhaudenhuyse A., Demertzi A., Bruno M. A., Jaquet O., Bahri M. A.. (2016). Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers. Anesthesiology 125, 873–888. 10.1097/aln.000000000000127527496657
Bouillon T. W., Bruhn J., Radulescu L., Andresen C., Shafer T. J., Cohane C.. (2004). Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology 100, 1353–1372. 10.1097/00000542-200406000-0000615166553
Boveroux P., Vanhaudenhuyse A., Bruno M.-A., Noirhomme Q., Lauwick S., Luxen A.. (2010). Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113, 1038–1053. 10.1097/ALN.0b013e3181f697f520885292
Brown E. N., Purdon P. L., Van Dort C. J., (2011). General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu. Rev. Neurosci. 34, 601–628. 10.1146/annurev-neuro-060909-15320021513454
Casali A. G., Gosseries O., Rosanova M., Boly M., Sarasso S., Casali K. R.. (2013). A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 5:198ra105. 10.1126/scitranslmed.300629423946194
Cavanna F., Vilas M. G., Palmucci M., Tagliazucchi E., (2018). Dynamic functional connectivity and brain metastability during altered states of consciousness. Neuroimage 180, 383–395. 10.1016/j.neuroimage.2017.09.06528986208
Colombo M. A., Napolitani M., Boly M., Gosseries O., Casarotto S., Rosanova M.. (2019). The spectral exponent of the resting EEG indexes the presence of consciousness during unresponsiveness induced by propofol, xenon, and ketamine. Neuroimage 189, 631–644. 10.1016/j.neuroimage.2019.01.02430639334
Crone J. S., Lutkenhoff E. S., Bio B. J., Laureys S., Monti M. M., (2017). Testing proposed neuronal models of effective connectivity within the cortico-basal gangliathalamo-cortical loop during loss of consciousness. Cereb. Cortex 27, 2727–2738. 10.1093/cercor/bhw11227114177
Darracq M., Funk C. M., Polyakov D., Riedner B., Gosseries O., Nieminen J. O.. (2018a). Evoked α power is reduced in disconnected consciousness during sleep and anesthesia. Sci. Rep. 8:16664. 10.1038/s41598-018-34957-930413741
Darracq M., Sleigh J., Banks M. I., Sanders R. D., (2018b). Characterising the effect of propofol on complexity and stability in the EEG power spectrum. Br. J. Anaesth. 121, 1368–1369. 10.1016/j.bja.2018.09.00630442267
Demertzi A., Tagliazucchi E., Dehaene S., Deco G., Barttfeld P., Raimondo F.. (2019). Human consciousness is supported by dnamic patterns of brain signal coordination. Sci. Adv. 5:eaat7603. 10.1126/sciadv.aat760330775433
Driesen N. R., McCarthy G., Bhagwagar Z., Bloch M. H., Calhoun V. D., D’Souza D. C.. (2013a). The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity. Neuropsychopharmacology 38, 2613–2622. 10.1038/npp.2013.17023856634
Driesen N. R., McCarthy G., Bhagwagar Z., Bloch M., Calhoun V., D’Souza D. C.. (2013b). Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Mol. Psychiatry 18, 1199–1204. 10.1038/mp.2012.19423337947
Evered L., Silbert B., Knopman D. S., Scott D. A., DeKosky S. T., Rasmussen L. S.. (2018). Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. Br. J. Anaesth. 121, 1005–1012. 10.1016/j.bja.2017.11.08730336844
Ferrarelli F., Massimini M., Sarasso S., Casali A., Riedner B. A., Angelini G.. (2010). Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc. Natl. Acad. Sci. U S A 107, 2681–2686. 10.1073/pnas.091300810720133802
Fiset P., Paus T., Daloze T., Plourde G., Meuret P., Bonhomme V.. (1999). Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J. Neurosci. 19, 5506–5513. 10.1523/JNEUROSCI.19-13-05506.199910377359
Frolich M. A., Banks C., Ness T. J., (2017). The effect of sedation on cortical activation: a randomized study comparing the effects of sedation with midazolam, propofol, and dexmedetomidine on auditory processing. Anesth. Analg. 124, 1603–1610. 10.1213/ane.000000000000202128333707
Gómez F., Phillips C., Soddu A., Boly M., Boveroux P., Vanhaudenhuyse A.. (2013). Changes in effective connectivity by propofol sedation. PLoS One 8:e71370. 10.1371/journal.pone.007137023977030
Gao W.-W., He Y.-H., Liu L., Yuan Q., Wang Y.-F., Zhao B., (2018). BIS monitoring on intraoperative awareness: a meta-analysis. Curr. Med. Sci. 38, 349–353. 10.1007/s11596-018-1886-130074196
Gaskell A. L. L., Hight D. F. F., Winders J., Tran G., Defresne A., Bonhomme V.. (2017). Frontal α-delta EEG does not preclude volitional response during anaesthesia: prospective cohort study of the isolated forearm technique. Br. J. Anaesth. 119, 664–673. 10.1093/bja/aex17029121278
Golkowski D., Larroque S. K., Vanhaudenhuyse A., Plenevaux A., Boly M., Di Perri C.. (2019). Changes in whole brain dynamics and connectivity patterns during sevoflurane- and propofol-induced unconsciousness identified by functional magnetic resonance imaging. Anesthesiology 130, 898–911. 10.1097/aln.000000000000270431045899
Greicius M. D., Kiviniemi V., Tervonen O., Vainionpää V., Alahuhta S., Reiss A. L.. (2008). Persistent default-mode network connectivity during light sedation. Hum. Brain Mapp. 29, 839–847. 10.1002/hbm.2053718219620
Guldenmund P., Demertzi A., Boveroux P., Boly M., Vanhaudenhuyse A., Bruno M.-A.. (2013). Thalamus, brainstem and salience network connectivity changes during propofol-induced sedation and unconsciousness. Brain Connect. 3, 273–285. 10.1089/brain.2012.011723547875
Guldenmund P., Gantner I. S., Baquero K., Das T., Demertzi A., Boveroux P.. (2016). Propofol-induced frontal cortex disconnection: a study of resting-state networks, total brain connectivity and mean BOLD signal oscillation frequencies. Brain Connect. 6, 225–237. 10.1089/brain.2015.036926650183
Guldenmund P., Vanhaudenhuyse A., Sanders R. D., Sleigh J., Bruno M. A., Demertzi A.. (2017). Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep. Br. J. Anaesth. 119, 674–684. 10.1093/bja/aex25729121293
Hashmi J. A., Loggia M. L., Khan S., Gao L., Kim J., Napadow V.. (2017). Dexmedetomidine disrupts the local and global efficiencies of large-scale brain networks. Anesthesiology 126, 419–430. 10.1097/ALN.000000000000150928092321
Huang Z., Liu X., Mashour G. A., Hudetz A. G., (2018). Timescales of intrinsic BOLD signal dynamics and functional connectivity in pharmacologic and neuropathologic states of unconsciousness. J. Neurosci. 38, 2304–2317. 10.1523/JNEUROSCI.2545-17.201829386261
Hutt A., Lefebvre J., Hight D., Sleigh J., (2018). Suppression of underlying neuronal fluctuations mediates EEG slowing during general anaesthesia. Neuroimage 179, 414–428. 10.1016/j.neuroimage.2018.06.04329920378
Kafashan M., Ching S., Palanca B. J. A., (2016). Sevoflurane alters spatiotemporal functional connectivity motifs that link resting-state networks during wakefulness. Front. Neural Circuits 10:107. 10.3389/fncir.2016.0010728082871
Kim H., Moon J.-Y., Mashour G. A., Lee U., (2018). Mechanisms of hysteresis in human brain networks during transitions of consciousness and unconsciousness: theoretical principles and empirical evidence. PLoS Comput. Biol. 14:e1006424. 10.1371/journal.pcbi.100642430161118
Kim M., Mashour G. A., Moraes S.-B., Vanini G., Tarnal V., Janke E.. (2016). Functional and topological conditions for explosive synchronization develop in human brain networks with the onset of anesthetic-induced unconsciousness. Front. Comput. Neurosci. 10:1. 10.3389/fncom.2016.0000126834616
Koch C., Massimini M., Boly M., Tononi G., (2016). Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321. 10.1038/nrn.2016.2227094080
Kuizenga M. H., Colin P. J., Reyntjens K. M. E. M., Touw D. J., Nalbat H., Knotnerus F. H.. (2018). Test of neural inertia in humans during general anaesthesia. Br. J. Anaesth. 120, 525–536. 10.1016/j.bja.2017.11.07229452809
Lee H., Golkowski D., Jordan D., Berger S., Ilg R., Lee J.. (2018). Relationship of critical dynamics, functional connectivity, and states of consciousness in large-scale human brain networks. Neuroimage 188, 228–238. 10.1016/j.neuroimage.2018.12.01130529630
Lee U., Kim S., Noh G. J., Choi B. M., Hwang E., Mashour G. A., (2009). The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans. Conscious. Cogn. 18, 1069–1078. 10.1016/j.concog.2009.04.00419443244
Lee U., Ku S., Noh G., Baek S., Choi B., Mashour G. A., (2013). Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology 118, 1264–1275. 10.1097/ALN.0b013e31829103f523695090
Lee H., Mashour G. A., Noh G.-J., Kim S., Lee U., (2013). Reconfiguration of network hub structure after propofol-induced unconsciousness. Anesthesiology 119, 1347–1359. 10.1097/aln.0b013e3182a8ec8c24013572
Lee U., Mashour G. A., (2018a). Role of network science in the study of anesthetic state transitions. Anesthesiology 129, 1029–1044. 10.1097/ALN.000000000000222829683806
Lee U., Mashour G. A., (2018b). Stochastic nature of neural inertia. Br. J. Anaesth. 121, 7–8. 10.1016/j.bja.2018.04.01829935597
Lee M., Sanders R. D., Yeom S. K., Won D. O., Seo K. S., Kim H. J.. (2017). Network properties in transitions of consciousness during propofol-induced sedation. Sci. Rep. 7:16791. 10.1038/s41598-017-15082-529196672
Lewis L. D., Piantoni G., Peterfreund R. A., Eskandar E. N., Harrell P. G., Akeju O.. (2018). A transient cortical state with sleep-like sensory responses precedes emergence from general anesthesia in humans. Elife 7:e33250. 10.7554/elife.3325030095069
Li M., Woelfer M., Colic L., Safron A., Chang C., Jochen H., (2018). Default mode network connectivity change corresponds to ketamine’s delayed glutamatergic effects. Eur. Arch. Psychiatry Clin. Neurosci. [Epub ahead of print]. 10.1007/s00406-018-0942-y30353262
Liang Z., Huang C., Li Y., Hight D. F., Voss L. J., Sleigh J. W.. (2018). Emergence EEG pattern classification in sevoflurane anesthesia. Physiol. Meas. 39:045006. 10.1088/1361-6579/aab4d029513276
Liang P., Zhang H., Xu Y., Jia W., Zang Y., Li K., (2015). Disruption of cortical integration during midazolam-induced light sedation. Hum. Brain Mapp. 36, 4247–4261. 10.1002/hbm.2291426314702
Lichtner G., Auksztulewicz R., Kirilina E., Velten H., Mavrodis D., Scheel M.. (2018a). Effects of propofol anesthesia on the processing of noxious stimuli in the spinal cord and the brain. Neuroimage 172, 642–653. 10.1016/j.neuroimage.2018.02.00329421324
Lichtner G., Auksztulewicz R., Velten H., Mavrodis D., Scheel M., Blankenburg F.. (2018b). Nociceptive activation in spinal cord and brain persists during deep general anaesthesia. Br. J. Anaesth. 121, 291–302. 10.1016/j.bja.2018.03.03129935584
Linassi F., Zanatta P., Tellaroli P., Ori C., Carron M., (2018). Isolated forearm technique: a meta-analysis of connected consciousness during different general anaesthesia regimens. Br. J. Anaesth. 121, 198–209. 10.1016/j.bja.2018.02.01929935574
Liu X., Ward B. D., Binder J. R., Li S. J., Hudetz A. G., (2014). Scale-free functional connectivity of the brain is maintained in anesthetized healthy participants but not in patients with unresponsive wakefulness syndrome. PLoS One 9:e92182. 10.1371/journal.pone.009218224647227
Marchant N., Sanders R., Sleigh J., Vanhaudenhuyse A., Bruno M. A., Brichant J. F.. (2014). How electroencephalography serves the anesthesiologist. Clin. EEG Neurosci. 45, 22–32. 10.1177/155005941350980124415399
Mashour G. A., (2018). Highways of the brain, traffic of the mind. Anesthesiology 129, 869–871. 10.1097/aln.000000000000238530102617
Mashour G. A., Hudetz A. G., (2018). Neural correlates of unconsciousness in large-scale brain networks. Trends Neurosci. 41, 150–160. 10.1016/j.tins.2018.01.00329409683
Mason S. E., Noel-Storr A., Ritchie C. W., (2010). The impact of general and regional anesthesia on the incidence of post-operative cognitive dysfunction and post-operative delirium: a systematic review with meta-analysis. J. Alzheimers Dis. 22, 67–79. 10.3233/jad-2010-10108620858956
Muthukumaraswamy S. D., Liley D. T., (2018). 1/F electrophysiological spectra in resting and drug-induced states can be explained by the dynamics of multiple oscillatory relaxation processes. Neuroimage 179, 582–595. 10.1016/j.neuroimage.2018.06.06829959047
Nelson L. E., Lu J., Guo T., Saper C. B., Franks N. P., Maze M., (2003). The α2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 98, 428–436. 10.1097/00000542-200302000-0002412552203
Nicolaou N., Georgiou J., (2014). Neural network-based classification of anesthesia/awareness using granger causality features. Clin. EEG Neurosci. 45, 77–88. 10.1177/155005941348627123820086
Nourski K. V., Steinschneider M., Rhone A. E., Kawasaki H., Howard M. A., III. Banks M. I., (2018). Auditory predictive coding across awareness states under anesthesia: an intracranial electrophysiology study. J. Neurosci. 38, 8441–8452. 10.1523/JNEUROSCI.0967-18.201830126970
Numan T., Slooter A. J. C., van der Kooi A. W., Hoekman A. M. L., Suyker W. J. L., Stam C. J.. (2017). Functional connectivity and network analysis during hypoactive delirium and recovery from anesthesia. Clin. Neurophysiol. 128, 914–924. 10.1016/j.clinph.2017.02.02228402867
Pal D., Dean J. G., Liu T., Li D., Watson C. J., Hudetz A. G.. (2018). Differential role of prefrontal and parietal cortices in controlling level of consciousness. Curr. Biol. 28, 2145.e5–2152.e5. 10.1016/j.cub.2018.05.02529937348
Palanca B. J. A., Mitra A., Larson-Prior L., Snyder A. Z., Avidan M. S., Raichle M. E., (2015). Resting-state functional magnetic resonance imaging correlates of sevoflurane-induced unconsciousness. Anesthesiology 123, 346–356. 10.1097/aln.000000000000073126057259
Pappas I., Adapa R. M., Menon D. K., Stamatakis E. A., (2019). Brain network disintegration during sedation is mediated by the complexity of sparsely connected regions. Neuroimage 186, 221–233. 10.1016/j.neuroimage.2018.10.07830391346
Pflanz C. P., Pringle A., Filippini N., Warren M., Gottwald J., Cowen P. J.. (2015). Effects of seven-day diazepam administration on resting-state functional connectivity in healthy volunteers: a randomized, double-blind study. Psychopharmacology 232, 2139–2147. 10.1007/s00213-014-3844-325539762
Plourde G., Boylan J. F., (1991). The auditory steady state response during sufentanil anaesthesia. Br. J. Anaesth. 66, 683–691. 10.1093/bja/66.6.6831829620
Purdon P. L., Pierce E. T., Mukamel E. A., Prerau M. J., Walsh J. L., Wong K. F. K.. (2013). Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc. Natl. Acad. Sci. U S A 110, E1142–E1151. 10.1073/pnas.122118011023487781
Radek L., Kallionpää R. E., Karvonen M., Scheinin A., Maksimow A., Långsjö J.. (2018). Dreaming and awareness during dexmedetomidine- and propofol-induced unresponsiveness. Br. J. Anaesth. 121, 260–269. 10.1016/j.bja.2018.03.01429935581
Ranft A., Golkowski D., Kiel T., Riedl V., Kohl P., Rohrer G.. (2016). Neural correlates of sevoflurane-induced unconsciousness identified by simultaneous functional magnetic resonance imaging and electroencephalography. Anesthesiology 125, 861–872. 10.1097/ALN.000000000000132227617689
Rex S., Meyer P. T., Baumert J.-H., Rossaint R., Fries M., Bull U.. (2008). Positron emission tomography study of regional cerebral blood flow and flow-metabolism coupling during general anaesthesia with xenon in humans. Br. J. Anaesth. 100, 667–675. 10.1093/bja/aen03618344553
Ribeiro de Paula D., Ziegler E., Abeyasinghe P. M., Das T. K., Cavaliere C., Aiello M.. (2017). A method for independent component graph analysis of resting-state fMRI. Brain Behav. 7:e00626. 10.1002/brb3.62628293468
Rowley P., Boncyk C., Gaskell A., Absalom A., Bonhomme V., Coburn M.. (2017). What do people expect of general anaesthesia? Br. J. Anaesth. 118, 486–488. 10.1093/bja/aex04028403409
Sanders R. D., Banks M. I., Darracq M., Moran R., Sleigh J., Gosseries O.. (2018). Propofol-induced unresponsiveness is associated with impaired feedforward connectivity in cortical hierarchy. Br. J. Anaesth. 121, 1084–1096. 10.1016/j.bja.2018.07.00630336853
Sanders R. D., Gaskell A., Raz A., Winders J., Stevanovic A., Rossaint R.. (2017). Incidence of connected consciousness after tracheal intubation: a prospective, international, multicenter cohort study of the isolated forearm technique. Anesthesiology 126, 214–222. 10.1097/ALN.000000000000147927984262
Sanders R. D., Tononi G., Laureys S., Sleigh J. W., (2012). Unresponsiveness ≠ unconsciousness. Anesthesiology 116, 946–959. 10.1097/ALN.0b013e318249d0a722314293
Sarasso S., Boly M., Napolitani M., Gosseries O., Charland-Verville V., Casarotto S.. (2015). Consciousness and complexity during unresponsiveness induced by propofol, xenon and ketamine. Curr. Biol. 25, 3099–3105. 10.1016/j.cub.2015.10.01426752078
Scheidegger M., Walter M., Lehmann M., Metzger C., Grimm S., Boeker H.. (2012). Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action. PLoS One 7:e44799. 10.1371/journal.pone.004479923049758
Scheinin H., Alkire E. C., Scheinin A., Alkire M. T., Kantonen O., Langsjo J., (2018). Using positron emission tomography in revealing the mystery of general anesthesia: study design challenges and opportunities. Meth. Enzymol. 603, 279–303. 10.1016/bs.mie.2018.01.02529673531
Sleigh J., Warnaby C., Tracey I., (2018). General anaesthesia as fragmentation of selfhood: insights from electroencephalography and neuroimaging. Br. J. Anaesth. 121, 233–240. 10.1016/j.bja.2017.12.03829935577
Staquet C., Vanhaudenhuyse A., Bonhomme V., (2018). Aware beside an unconscious patient, not the inverse! On the necessity of knowing how anesthesia modulates consciousness. Acta Anaesthesiol. Belg. 69, 137–145.
Tagliazucchi E., Chialvo D. R., Siniatchkin M., Amico E., Brichant J.-F., Bonhomme V.. (2016). Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics. J. R. Soc. Interface 13:20151027. 10.1098/rsif.2015.102726819336
Thiery T., Lajnef T., Combrisson E., Dehgan A., Rainville P., Mashour G. A.. (2018). Long-range temporal correlations in the brain distinguish conscious wakefulness from induced unconsciousness. Neuroimage 179, 30–39. 10.1016/j.neuroimage.2018.05.06929885482
Tononi G., (2004). An information integration theory of consciousness. BMC Neurosci. 5:42. 10.1186/1471-2202-5-4215522121
Uhl R. R., Squires K. C., Bruce D. L., Starr A., (1980). Variations in visual evoked potentials under anesthesia. Prog. Brain Res. 54, 463–466. 10.1016/s0079-6123(08)61662-37220953
Uhrig L., Sitt J. D., Jacob A., Tasserie J., Barttfeld P., Dupont M.. (2018). Resting-state dynamics as a cortical signature of anesthesia in monkeys. Anesthesiology 129, 942–958. 10.1097/ALN.000000000000233630028727
Untergehrer G., Jordan D., Kochs E. F., Ilg R., Schneider G., (2014). Fronto-parietal connectivity is a non-static phenomenon with characteristic changes during unconsciousness. PLoS One 9:e87498. 10.1371/journal.pone.008749824475298
van Dellen E., van der Kooi A. W., Numan T., Koek H. L., Klijn F. A. M., Buijsrogge M. P.. (2014). Decreased functional connectivity and disturbed directionality of information flow in the electroencephalography of intensive care unit patients with delirium after cardiac surgery. Anesthesiology 121, 328–335. 10.1097/ALN.000000000000032924901239
Vanhaudenhuyse A., Demertzi A., Schabus M., Noirhomme Q., Bredart S., Boly M.. (2011). Two distinct neuronal networks mediate the awareness of environment and of self. J. Cogn. Neurosci. 23, 570–578. 10.1162/jocn.2010.2148820515407
Vlisides P. E., Bel-Bahar T., Lee U. C., Li D., Kim H., Janke E.. (2017). Neurophysiologic correlates of ketamine sedation and anesthesia: a high-density electroencephalography study in healthy volunteers. Anesthesiology 127, 58–69. 10.1097/ALN.000000000000167128486269
Vlisides P. E., Bel-Bahar T., Nelson A., Chilton K., Smith E., Janke E.. (2018). Subanaesthetic ketamine and altered states of consciousness in humans. Br. J. Anaesth. 121, 249–259. 10.1016/j.bja.2018.03.01129935579
Vutskits L., (2018). General anesthetics to treat major depressive disorder: clinical relevance and underlying mechanisms. Anesth. Analg. 126, 208–216. 10.1213/ANE.000000000000259429135596
Wang J., Noh G. J., Choi B. M., Ku S. W., Joo P., Jung W. S.. (2017). Suppressed neural complexity during ketamine- and propofol-induced unconsciousness. Neurosci. Lett. 653, 320–325. 10.1016/j.neulet.2017.05.04528572032
Warnaby C. E., Sleigh J. W., Hight D., Jbabdi S., Tracey I., (2017). Investigation of slow-wave activity saturation during surgical anesthesia reveals a signature of neural inertia in humans. Anesthesiology 127, 645–657. 10.1097/ALN.000000000000175928665814
Xie G., Deschamps A., Backman S. B., Fiset P., Chartrand D., Dagher A.. (2011). Critical involvement of the thalamus and precuneus during restoration of consciousness with physostigmine in humans during propofol anaesthesia: a positron emission tomography study. Br. J. Anaesth. 106, 548–557. 10.1093/bja/aeq41521285081