Understanding the Structure and Properties of Sesqui-Chalcogenides (i.e., V2VI3 or Pn2Ch3 (Pn = Pnictogen, Ch = Chalcogen) Compounds) from a Bonding Perspective
chemical bonding; laser-assisted field evaporation; materials design; sesqui-chalcogenides
Abstract :
[en] Abstract A number of sesqui-chalcogenides show remarkable properties, which make them attractive for applications as thermoelectrics, topological insulators, and phase-change materials. To see if these properties can be related to a special bonding mechanism, seven sesqui-chalcogenides (Bi2Te3, Bi2Se3, Bi2S3, Sb2Te3, Sb2Se3, Sb2S3, and β-As2Te3) and GaSe are investigated. Atom probe tomography studies reveal that four of the seven sesqui-chalcogenides (Bi2Te3, Bi2Se3, Sb2Te3, and β-As2Te3) show an unconventional bond-breaking mechanism. The same four compounds evidence a remarkable property portfolio in density functional theory calculations including large Born effective charges, high optical dielectric constants, low Debye temperatures and an almost metal-like electrical conductivity. These results are indicative for unconventional bonding leading to physical properties distinctively different from those caused by covalent, metallic, or ionic bonding. The experiments reveal that this bonding mechanism prevails in four sesqui-chalcogenides, characterized by rather short interlayer distances at the van der Waals like gaps, suggestive of significant interlayer coupling. These conclusions are further supported by a subsequent quantum-chemistry-based bonding analysis employing charge partitioning, which reveals that the four sesqui-chalcogenides with unconventional properties are characterized by modest levels of charge transfer and sharing of about one electron between adjacent atoms. Finally, the 3D maps for different properties reveal discernible property trends and enable material design.
Disciplines :
Physics
Author, co-author :
Cheng, Yudong
Cojocaru-Mirédin, Oana
Keutgen, Jens
Yu, Yuan
Küpers, Michael
Schumacher, Mathias
Golub, Pavlo
Raty, Jean-Yves ; Université de Liège - ULiège > Département de physique > Physique des solides, interfaces et nanostructures
Dronskowski, Richard
Wuttig, Matthias
Language :
English
Title :
Understanding the Structure and Properties of Sesqui-Chalcogenides (i.e., V2VI3 or Pn2Ch3 (Pn = Pnictogen, Ch = Chalcogen) Compounds) from a Bonding Perspective
D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, M. Wuttig, Nat. Mater. 2008, 7, 972.
a) S. Raoux, W. Wełnic, D. Ielmini, Chem. Rev. 2010, 110, 240;
b) M. Wuttig, H. Bhaskaran, T. Taubner, Nat. Photonics 2017, 11, 465.
a) G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105;
b) M. Hong, J. Zou, Z. G. Chen, Adv. Mater. 2019, 31, 1807071;
c) G. Tan, L.-D. Zhao, M. G. Kanatzidis, Chem. Rev. 2016, 116, 12123.
H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Nat. Phys. 2009, 5, 438.
D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. Dil, J. Osterwalder, L. Patthey, A. Fedorov, H. Lin, Phys. Rev. Lett. 2009, 103, 146401.
J. Y. Raty, M. Schumacher, P. Golub, V. L. Deringer, C. Gatti, M. Wuttig, Adv. Mater. 2019, 31, 1806280.
M. Wuttig, V. L. Deringer, X. Gonze, C. Bichara, J. Y. Raty, Adv. Mater. 2018, 30, 1803777.
K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Nat. Mater. 2008, 7, 653.
S. Lee, K. Esfarjani, T. Luo, J. Zhou, Z. Tian, G. Chen, Nat. Commun. 2014, 5, 3525.
M. Zhu, O. Cojocaru-Mirédin, A. M. Mio, J. Keutgen, M. Küpers, Y. Yu, J. Y. Cho, R. Dronskowski, M. Wuttig, Adv. Mater. 2018, 30, 1706735.
a) J. Li, X. Zhang, Z. Chen, S. Lin, W. Li, J. Shen, I. T. Witting, A. Faghaninia, Y. Chen, A. Jain, Joule 2018, 2, 976;
b) K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature 2012, 489, 414;
c) L.-D. Zhao, H. J. Wu, S. Q. Hao, C.-I. Wu, X. Y. Zhou, K. Biswas, J. Q. He, T. P. Hogan, C. Uher, C. Wolverton, Energy Environ. Sci. 2013, 6, 3346;
d) Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder, Nature 2011, 473, 66.
a) M. Cagnoni, D. Führen, M. Wuttig, Adv. Mater. 2018, 30, 1801787;
b) Y. Yu, M. Cagnoni, O. Cojocaru-Mirédin, M. Wuttig, Adv. Funct. Mater. 2019, 29, 190.
a) E. Rotunno, M. Longo, C. Wiemer, R. Fallica, D. Campi, M. Bernasconi, A. R. Lupini, S. J. Pennycook, L. Lazzarini, Chem. Mater. 2015, 27, 4368;
b) R. Wang, F. R. L. Lange, S. Cecchi, M. Hanke, M. Wuttig, R. Calarco, Adv. Funct. Mater. 2018, 28, 1705901;
c) P. A. Vermeulen, J. Mulder, J. Momand, B. J. Kooi, Nanoscale 2018, 10, 1474.
a) G. Zheng, X. Su, H. Xie, Y. Shu, T. Liang, X. She, W. Liu, Y. Yan, Q. Zhang, C. Uher, Energy Environ. Sci. 2017, 10, 2638;
b) T. Zhu, L. Hu, X. Zhao, J. He, Adv. Sci. 2016, 3, 1600004;
c) B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, Science 2008, 320, 634;
d) S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, Science 2015, 348, 109.
a) N. Han, S. I. Kim, J. D. Yang, K. Lee, H. Sohn, H. M. So, C. W. Ahn, K. H. Yoo, Adv. Mater. 2011, 23, 1871;
b) N. Yamada, MRS Bull. 1996, 21, 48.
A. K. Geim, I. V. Grigorieva, Nature 2013, 499, 419.
A. Gupta, T. Sakthivel, S. Seal, Prog. Mater. Sci. 2015, 73, 44.
a) K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. C. Neto, Science 2016, 353, aac9439;
b) Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 2018, 556, 43.
a) J.-B. Vaney, G. Delaizir, A. Piarristeguy, J. Monnier, E. Alleno, E. B. Lopes, A. P. Goncalves, A. Pradel, A. Dauscher, C. Candolfi, APL Mater. 2016, 4, 104901;
b) Y. Kawamoto, H. Iwasaki, J. Electron. Mater. 2014, 43, 1475;
c) K. Biswas, L. D. Zhao, M. G. Kanatzidis, Adv. Energy Mater. 2012, 2, 634;
d) J. Jiang, L. Chen, S. Bai, Q. Yao, Q. Wang, J. Cryst. Growth 2005, 277, 258;
e) I. Yashima, H. Watanave, T. Ogisu, R. Tsukuda, S. Sato, Jpn. J. Appl. Phys. 1998, 37, 2472.
a) S. Liu, J. Wei, F. Gan, Appl. Phys. Lett. 2012, 100, 111903;
b) X. P. Wang, N. K. Chen, X. B. Li, Y. Cheng, X. Liu, M. J. Xia, Z. Song, X. Han, S. Zhang, H. B. Sun, Phys. Chem. Chem. Phys. 2014, 16, 10810;
c) Y. Zheng, M. Xia, Y. Cheng, F. Rao, K. Ding, W. Liu, Y. Jia, Z. Song, S. Feng, Nano Res. 2016, 9, 3453.
B. Gault, M. P. Moody, J. M. Cairney, S. P. Ringer, Atom Probe Microscopy, Springer, New York 2012.
B. Gault, F. Vurpillot, A. Vella, M. Gilbert, A. Menand, D. Blavette, B. Deconihout, Rev. Sci. Instrum. 2006, 77, 043705.
F. De Geuser, B. Gault, A. Bostel, F. Vurpillot, Surf. Sci. 2007, 601, 536.
D. W. Saxey, Ultramicroscopy 2011, 111, 473.
B. Mazumder, A. Vella, B. Déconihout, Ultramicroscopy 2011, 111, 571.
T. F. Kelly, A. Vella, J. H. Bunton, J. Houard, E. P. Silaeva, J. Bogdanowicz, W. Vandervorst, Curr. Opin. Solid State Mater. Sci. 2014, 18, 81.
A. Vella, Ultramicroscopy 2013, 132, 5.
a) E. I. Elagina, in Proc. 4th Conf. Semiconducting Materials: Current Topics in Semiconductor Metallurgy and Physics, Akademiya Nauk SSSR, Moscow 1961, pp. 153–158;
b) J. Horák, Z. Starý, M. Matyáš, J. Solid State Chem. 1991, 93, 485;
c) J. B. Vaney, J. Carreaud, G. Delaizir, C. Morin, J. Monnier, E. Alleno, A. Piarristeguy, A. Pradel, A. P. Goncalves, E. B. Lopes, J. Electron. Mater. 2016, 45, 1786;
d) J. Yanez-Limon, J. González-Hernández, J. Alvarado-Gil, I. Delgadillo, H. Vargas, Phys. Rev. B 1995, 52, 16321;
e) B. Roy, B. Chakraborty, R. Bhattacharya, A. Dutta, Solid State Commun. 1978, 25, 937;
f) J. F. Sánchez-Royo, A. Segura, A. Chevy, L. Roa, J. Appl. Phys. 1996, 79, 204;
g) H. T. Shaban, M. M. Nassary, M. S. El-Sadek, Phys. B 2008, 403, 1655.
a) X. Yang, Z. Zhou, Y. Wang, R. Jiang, W. Zheng, C. Q. Sun, J. Appl. Phys. 2012, 112, 083508;
b) S. Jandl, J. Brebner, B. Powell, Phys. Rev. B 1976, 13, 686;
c) Z. Liu, Y. Pei, H. Geng, J. Zhou, X. Meng, W. Cai, W. Liu, J. Sui, Nano Energy 2015, 13, 554;
d) E. S. Toberer, A. Zevalkink, G. J. Snyder, J. Mater. Chem. 2011, 21, 15843.
a) J.-B. Vaney, J.-C. Crivello, C. Morin, G. Delaizir, J. Carreaud, A. Piarristeguy, J. Monnier, E. Alleno, A. Pradel, E. B. Lopes, RSC Adv. 2016, 6, 52048;
b) H. Koc, A. M. Mamedov, E. Deligoz, H. Ozisik, Solid State Sci. 2012, 14, 1211.
a) O. Madelung, Semiconductors: Data Handbook, Springer Science & Business Media, Berlin 2012;
b) P. Leung, G. Andermann, W. G. Spitzer, C. Mead, J. Phys. Chem. Solids 1966, 27, 849.
A. F. Zurhelle, V. L. Deringer, R. P. Stoffel, R. Dronskowski, J. Phys: Condens. Mater. 2016, 28, 115401.
J. H. Mooij, Phys. Status Solidi A 1973, 17, 521.
T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, M. Wuttig, Nat. Mater. 2011, 10, 202.
a) U. V. Waghmare, N. A. Spaldin, H. C. Kandpal, R. Seshadri, Phys. Rev. B 2003, 67, 125111;
b) R. Dronskowski, P. E. Blöchl, J. Phys. Chem. 1993, 97, 8617.
M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gilleßen, R. Dronskowski, Nat. Mater. 2007, 6, 122.
R. P. Stoffel, V. L. Deringer, R. E. Simon, R. P. Hermann, R. Dronskowski, J. Phys.: Condens. Matter 2015, 27, 085402.
V. L. Deringer, R. P. Stoffel, M. Wuttig, R. Dronskowski, Chem. Sci. 2015, 6, 5255.
F. El-Mellouhi, N. Mousseau, P. Ordejón, Phys. Rev. B 2004, 70, 205202.
T. Plecháček, J. Navratil, J. Horak, J. Solid State Chem. 2002, 165, 35.
S. Wang, Y. Sun, J. Yang, B. Duan, L. Wu, W. Zhang, J. Yang, Energy Environ. Sci. 2016, 9, 3436.
G. T. Brunner, D. Schwarzenbach, Z. Kristallogr. 1971, 133, 127.
a) L. Pauling, The Nature of the Chemical Bond, Vol. 260, Cornell University Press, Ithaca, NY, USA 1960;
b) L. Pauling, J. Phys. Chem. 1954, 58, 662.
A. H. Edwards, A. C. Pineda, P. A. Schultz, M. G. Martin, A. P. Thompson, H. P. Hjalmarson, C. J. Umrigar, Phys. Rev. B 2006, 73, 045210.
S. K. Mishra, S. Satpathy, O. Jepsen, J. Phys.: Condens. Matter 1997, 9, 461.