Kesterite; Thin film solar cell; physical vapor deposition; earth-abundant materials; absorber layer
Abstract :
[en] This paper provides an overview of the physical vapor technologies used to synthesize Cu2ZnSn(S,Se)4 thin films as absorber layers for photovoltaic applications. Through the years, CZT(S,Se) thin films have been fabricated using sequential stacking or co-sputtering of precursors as well as using sequential or co-evaporation of elemental sources, leading to high-efficient solar cells. In addition, pulsed laser deposition of composite targets and monograin growth by the molten salt method were developed as alternative methods for kesterite layers deposition. This review presents the growing increase of the kesterite-based solar cell efficiencies achieved over the recent years. A historical description of the main issues limiting this efficiency and of the experimental pathways designed to prevent or limit these issues is provided and discussed as well. A final section is dedicated to the description of promising process steps aiming at further improvements of solar cell efficiency, such as alkali doping and bandgap grading.
Research Center/Unit :
CESAM—Q-MAT—Solid State Physics, Interfaces and Nanostructures, Physics Institute B5a, Allée du Six Août 19, B-4000 Liege, Belgium Institute for Material Research (IMO), Hasselt University, Agoralaan gebouw H, B-3590 Diepenbeek, Belgium IMEC division IMOMEC—partner in Solliance, Wetenschapspark 1, B-3590 Diepenbeek, Belgium Universidad Autonoma de Madrid, Departamento de Fisica Aplicada, C/Francisco Tomaas y Valiente 7, E-28049 Madrid, Spain DTU Fotonik, Technical University of Denmark, DK-4000 Roskilde, Denmark Abteilung Energie-und Halbleiterforschung (EHF), Institut für Physik, Carl von Ossietzky Universität Oldenburg, Germany Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea ENEA,Casaccia Research Center, via Anguillarese 301, I-00123 Roma, Italy Scanning Probe Microscopy Laboratory, University of Luxembourg 162a, Avenue de la Faïencerie, L-1511, Luxembourg Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., E-08930 Sant Adrià del Besòs-Barcelona, Spain Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics, Tsukuba, Ibaraki 305- 8568, Japan Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia Imec division IMOMEC (partner in Solliance), Wetenschapspark 1, B-3590 Diepenbeek, Belgium Energyville, Thor Park 8320, B-3600 Genk, Belgium
Disciplines :
Physics
Author, co-author :
Ratz, Thomas ; Université de Liège - ULiège > Département de physique > Département de physique
Caballero, Raquel; Universidad Autonoma de Madrid, Departamento de Fisica Aplicada, C/Francisco Tomaas y Valiente 7, E-28049 Madrid, Spain
Léon, Maximo; Universidad Autonoma de Madrid, Departamento de Fisica Aplicada, C/Francisco Tomaas y Valiente 7, E-28049 Madrid, Spain
Canulescu, Stella; DTU Fotonik, Technical University of Denmark, DK-4000 Roskilde, Denmark
Schou, Jorgen; DTU Fotonik, Technical University of Denmark, DK-4000 Roskilde, Denmark
Gütay, Leuven; Abteilung Energie-und Halbleiterforschung (EHF), Institut für Physik, Carl von Ossietzky Universität Oldenburg, Germany
Pareek, Devendra; Abteilung Energie-und Halbleiterforschung (EHF), Institut für Physik, Carl von Ossietzky Universität Oldenburg, Germany
Taskesen, Teoman; Abteilung Energie-und Halbleiterforschung (EHF), Institut für Physik, Carl von Ossietzky Universität Oldenburg, Germany
Kim, Dae-Hwan; Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
Kang, J.-K.; Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
Malerba, Claudia; ENEA,Casaccia Research Center, via Anguillarese 301, I-00123 Roma, Italy
Redigner, Alex; Scanning Probe Microscopy Laboratory, University of Luxembourg 162a, Avenue de la Faïencerie, L-1511, Luxembourg
Saucedo, Edgardo; Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2pl., E-08930 Sant Adrià del Besòs-Barcelona, Spain
Shin, Byungha; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
Tampo, Hitoshi; National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics, Tsukuba, Ibaraki 305- 8568, Japan
Timmo, Kristi; Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
Nguyen, Ngoc Duy ; Université de Liège - ULiège > Département de physique > Physique des solides, interfaces et nanostructures
Vermang, Bart; Institute for Material Research (IMO), Hasselt University, Agoralaan gebouw H, B-3590 Diepenbeek, Belgium
H2020 - 777968 - INFINITE-CELL - International cooperation for the development of cost-efficient kesterite/c-Si thin film next generation tandem solar cells
PV Magazine 2019 Solar Frontier hits new CIS cell efficiency record, www.solar-frontier.com/eng/news/2019/0117_press.html (accessed 14 February 2019)
Lee Y S et al 2015 Cu2ZnSnSe4 thin-film solar cells by thermal Co-evaporation with 11.6% efficiency and improved minority carrier diffusion length Adv. Energy Mater. 5 1401372
Kim S, Kim K M, Tampo H, Shibata H and Niki S 2016 Improvement of voltage deficit of Ge-incorporated kesterite solar cell with 12.3% conversion efficiency Appl. Phys. Express 9 102301
Yang K-J et al 2016 A band-gap-graded CZTSSe solar cell with 12.3% efficiency J. Mater. Chem. A 4 10151
Yan C et al 2018 Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment Nat. Energy 3 764–72
Giraldo S et al 2018 How small amounts of Ge modify the formation pathways and crystallization of kesterites Energy Environ. Sci. 11 582
Green M A et al 2018 Solar cell efficiency tables (Version 53) Prog. Photovolt. Res. Appl. 27 3
Kato T, Sakai N and Sugimoto H 2014 Efficiency improvement of Cu2ZnSn(S,Se)4 submodule with graded bandgap and reduced backside ZnS segregation 2014 IEEE 40th Photovoltaic Specialist Conf. (PVSC) (Piscataway, NJ: IEEE) pp 0844–6
Taskesen T et al 2018 Device characteristics of an 11.4% CZTSe solar cell fabricated from sputtered precursors Adv. Energy Mater. 8 1703295
Son D-H et al 2018 Rep. 9th Eur. Kesterite Work (Ghent)
Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions on the 2017 list of Critical Raw Materials for the EU, https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2017:0490:FIN (accessed 14 February 2017).
Lopez-Marino S et al 2016 The importance of back contact modification in Cu2ZnSnSe4 solar cells: the role of a thin MoO2 layer Nano Energy 26 708
Wada T, Kohara N, Nishiwaki S and Negami T 2001 Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells Thin Solid Films 387 118
Wang W et al 2013 Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency Adv. Energy Mater. 4 1301465
Katagiri H et al 2008 Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique Appl. Phys. Express 1 041201
Shin B et al 2013 Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber Prog. Photovolt. Res. Appl. 21 72
Hiroi H, Sakai N, Kato T and Sugimoto H 2013 High voltage Cu2ZnSnS4 submodules by hybrid buffer layer 2013 IEEE 39th Photovoltaic Specialists Conf. (PVSC) (Piscataway, NJ: IEEE) pp 0863–6
Scragg J J et al 2013 Effects of back contact instability on Cu2ZnSnS4 devices and processes Chem. Mater. 25 3162
Yang K-J et al 2015 Effects of the compositional ratio distribution with sulfurization temperatures in the absorber layer on the defect and surface electrical characteristics of Cu2ZnSnS4 solar cells Prog. Photovolt. Res. Appl. 23 1771
Kauk-Kuusik M et al 2015 PN junction improvements of Cu2ZnSnS4/CdS monograin layer solar cells Appl. Surf. Sci. 357 795
Sun K et al 2016 Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1−xCdxS buffer layer Adv. Energy Mater. 6 1600046
Feng Y et al 2016 A low-temperature formation path toward highly efficient Se-free Cu2ZnSnS4 solar cells fabricated through sputtering and sulfurization CrystEngComm 18 1070
Ericson T et al 2017 Zinc-tin-oxide buffer layer and low temperature post annealing resulting in a 9.0% efficient Cd-Free Cu2ZnSnS4 solar cell Solar RRL 1 1700001
Malerba C, Valentini M and Mittiga A 2017 Cation disorder in Cu2ZnSnS4 thin films: effect on solar cell performances Solar RRL 1 1700101
Cazzaniga A et al 2017 Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition Sol. Energy Mater. Sol. Cells 166 91
Timmo K et al 2017 Influence of order-disorder in Cu2ZnSnS4 powders on the performance of monograin layer solar cells Thin Solid Films 633 122
Gansukh M et al 2019 Oxide route for Cu2ZnSnS4 solar cells by pulsed laser deposition 46th IEEE PVSC
Redinger A, Berg D M, Dale P J and Siebentritt S 2011 The consequences of kesterite equilibria for efficient solar cells J. Am. Chem. Soc. 133 3320
Repins I et al 2012 Co-evaporated Cu2ZnSnSe4 films and devices Sol. Energy Mater. Sol. Cells 101 154
Redinger A et al 2014 Different bandgaps in Cu2ZnSnSe4: a high temperature coevaporation study IEEE J. Photovolt. 5 641
Larsen J K et al 2017 Surface modification through air annealing Cu2ZnSn(S,Se)4 absorbers Thin Solid Films 633 118
de la Cueva L et al 2018 Sulfurization of co-evaporated Cu2ZnSnSe4 thin film solar cells The role of Na Sol. Energy Mater. Sol. Cells 186 115
Neubauer C, Samieipour A, Oueslati S, Ernits K and Meissner D 2018 Spatially resolved opto-electrical performance investigations of Cu2ZnSnS3.2Se0.8 photovoltaic devices Energy Sci. Eng. 6 563
Buffière M et al 2015 Physical characterization of Cu2ZnGeSe4 thin films from annealing of Cu–Zn–Ge precursor layers Thin Solid Films 582 171
Choubrac L et al 2018 7.6% CZGSe solar cells thanks to optimized CdS chemical bath deposition Phys. Status Solidi a 215 1800043
Taskesen T et al 2018 Resilient and reproducible processing for CZTSe solar cells in the range of 10% Prog. Photovolt. Res. Appl. 26 1003
Sun R et al 2018 Beyond 11% efficient Cu2ZnSn(Se,S)4 thin film solar cells by cadmium alloying Sol. Energy Mater. Sol. Cells 174 494
Tampo H, Kim S, Nagai T, Shibata H and Niki S 2019 Improving the open circuit voltage through surface oxygen plasma treatment and 11.7% efficient Cu2ZnSnSe4 solar cell ACS Appl. Mater. Interfaces 11 13319–25
Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J and Ho-Baillie A W 2018 Solar cell efficiency tables (version 52) Prog. Photovolt., Res. Appl. 26 427–36
Chirilă A et al 2011 Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films Nat. Mater. 10 857
Gabor A M et al 1994 High-efficiency CuInxGa1−x)Se2 solar cells made from (Inx,Ga1−x)2Se3 precursor films Appl. Phys. Lett. 65 198
Witte W et al 2014 Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells Prog. Photovolt. Res. Appl. 23 717
Sakurai K et al 2004 In situ diagnostic methods for thin-film fabrication: utilization of heat radiation and light scattering Prog. Photovolt. Res. Appl. 12 219
Kaufmann C A, Neisser A, Klenk R and Scheer R 2005 Transfer of Cu(In,Ga)Se2 thin film solar cells to flexible substrates using an in situ process control Thin Solid Films 480 515
Caballero R et al 2011 Investigation of Cu(In,Ga)Se2 thin-film formation during the multi-stage co-evaporation process Prog. Photovolt. Res. Appl. 21 30
Weber A et al 2009 Multi-stage evaporation of Cu2ZnSnS4 thin films Thin Solid Films 517 2524
Schubert B-A et al 2011 Cu2ZnSnS4 thin film solar cells by fast coevaporation Prog. Photovolt. Res. Appl. 19 93
Hsu W-C et al 2013 Growth mechanisms of co-evaporated kesterite: a comparison of Cu-rich and Zn-rich composition paths Prog. Photovolt. Res. Appl. 22 35
Redinger A et al 2011 Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films Appl. Phys. Lett. 98 101907
Choi S G et al 2014 Temperature dependent band-gap energy for Cu2ZnSnSe4. A spectroscopic ellipsometric study Sol. Energy Mater. Sol. Cells 130 375
Kim S et al 2016 Ge-incorporated Cu2ZnSnSe4 thin-film solar cells with efficiency greater than 10% Sol. Energy Mater. Sol. Cells 144 488
Rey G et al 2016 Ordering kesterite improves solar cells: a low temperature post-deposition annealing study Sol. Energy Mater. Sol. Cells 151 131
Kim J, Park S, Ryu S, Oh J and Shin B 2017 Improving the open-circuit voltage of Cu2ZnSnSe4 thin film solar cells via interface passivation Prog. Photovolt. Res. Appl. 25 308
Antunez P D et al 2017 Back contact engineering for increased performance in kesterite solar cells Adv. Energy Mater. 7 1602585
Fairbrother A et al 2013 On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks Sol. Energy Mater. Sol. Cells 112 97
Fairbrother A et al 2013 Single-step sulfo-selenization method to synthesize Cu2ZnSn(SySe1−y)4 absorbers from metallic stack precursors ChemPhysChem 14 1836
Giraldo S et al 2016 Cu2ZnSnSe4-based solar cells with efficiency exceeding 10% by adding a superficial Ge nanolayer: the interaction between Ge and Na IEEE J. Photovolt. 6 754
Yoo H and Kim J 2010 Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films Thin Solid Films 518 6567
Fernandes P A, Salome P M P, da Cunha A F and Schubert B-A 2011 Cu2ZnSnS4 solar cells prepared with sulphurized DC-sputtered stacked metallic precursors Thin Solid Films 519 7382
Ge J et al 2012 Fabrication of Cu2ZnSnS4 absorbers by sulfurization of Sn-rich precursors Phys. Status Solidi a 209 1493
Guo H et al 2018 The fabrication of Cd-free Cu2ZnSnS4-Ag2ZnSnS4 heterojunction photovoltaic devices Sol. Energy Mater. Sol. Cells 178 146
Oo W H et al 2011 Grain size and texture of Cu2ZnSnS4 thin films synthesized by cosputtering binary sulfides and annealing: effects of processing conditions and sodium J. Electron. Mater. 40 2214
Liu F et al 2017 Beyond 8% ultrathin kesterite Cu2ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact NPG Asia Mater. 9 e401
Ericson T, Scragg J J, Kubart T, Törndahl T and Platzer-Björkman C 2013 Annealing behavior of reactively sputtered precursor films for Cu2ZnSnS4 solar cells Thin Solid Films 535 22
Brammertz G et al 2013 Correlation between physical, electrical, and optical properties of Cu2ZnSnSe4 based solar cells Appl. Phys. Lett. 102 013902
Lin Y-P, Hsieh T-E, Chen Y-C and Huang K-P 2017 Characteristics of Cu2ZnSn(SxSe1−x)4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment Sol. Energy Mater. Sol. Cells 162 55
Nakamura R et al 2014 Cu2ZnSnS4 thin film deposited by sputtering with Cu2ZnSnS4 compound target Japan. J. Appl. Phys. 53 02BC10
Shimada T et al 2007 Cu2ZnSnS4 thin film solar cells prepared from sputtered and evaporated precursors International Symposiumon Organic and Inorganic Electronic Materials and Related Nanotechnologies (19 - 22 June) 162
Brammertz G et al 2013 Electrical characterization of Cu2ZnSnSe4 solar cells from selenization of sputtered metal layers Thin Solid Films 535 348
Brammertz G et al 2013 Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells Appl. Phys. Lett. 103 163904
Son D H et al 2015 Growth and device characteristics of CZTSSe thin-film solar cells with 8.03% efficiency Chem. Mater. 27 5180
Kim S-Y et al 2019 Void and secondary phase formation mechanisms of CZTSSe using Sn/Cu/Zn/Mo stacked elemental precursors Nano Energy 59 399
Chawla V and Clemens B 2012 Effect of composition on high efficiency CZTSSe devices fabricated using co-sputtering of compound targets 2012 38th IEEE Photovoltaic Specialists Conf. (Piscataway, NJ: IEEE) 002990
Andres C, Haass S, Romanyuk Y and Tiwari A 2017 9.4% efficient Cu2ZnSnSe4 solar cells from co-sputtered elemental metal precursor and rapid thermal annealing Thin Solid Films 633 141
Bodeux R, Mollica F and Delbos S 2015 Growth of Cu2ZnSnSe4 by cosputtering and reactive annealing atmosphere Sol. Energy Mater. Sol. Cells 132 67
Scragg J J et al 2013 Effects of back contact instability on Cu2ZnSnS4 devices and processes Chem. Mater. 25 3162
Englund S, Saini N and Platzer-Björkman C 2018 Cu2ZnSn(S,Se)4 from annealing of compound co-sputtered precursors: recent results and open questions Sol. Energy 175 84
Yan C et al 2016 Boosting the efficiency of pure sulfide CZTS solar cells using the In/Cd-based hybrid buffers Sol. Energy Mater. Sol. Cells 144 700
Santoni A et al 2013 Valence band offset at the CdS/Cu2ZnSnS4 interface probed by x-ray photoelectron spectroscopy J. Phys. D: Appl. Phys. 46 175101
Bär M et al 2011 Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction Appl. Phys. Lett. 99 222105
Liu F et al 2016 Nanoscale microstructure and chemistry of Cu2ZnSnS4/CdS interface in kesterite Cu2ZnSnS4 solar cells Adv. Energy Mater. 6 1600706
Ericson T, Scragg J J, Kubart T, Törndahl T and Platzer-Björkman C 2013 Annealing behavior of reactively sputtered precursor films for Cu2ZnSnS4 solar cells Thin Solid Films 535 22
Malerba C et al 2016 Blistering in Cu2ZnSnS4 thin films: correlation with residual stresses Mater. Des. 108 725
Liu F et al 2016 Nanoscale microstructure and chemistry of Cu2ZnSnS4/CdS interface in kesterite Cu2ZnSnS4 solar cells Adv. Energy Mater. 6 1600706
Moriya K, Tanaka K and Uchiki H 2007 Fabrication of Cu2ZnSnS4 thin-film solar cell prepared by pulsed laser deposition Japan. J. Appl. Phys. 46 5780
Ettlinger R B, Cazzaniga A, Canulescu S, Pryds N and Schou J 2015 Pulsed laser deposition from ZnS and Cu2SnS3 multicomponent targets Appl. Surf. Sci. 336 385
Vanalakar S A et al 2015 Fabrication of Cu2SnS3 thin film solar cells using pulsed laser deposition technique Sol. Energy Mater. Sol. Cells 138 1
Sulaiman N S C, Nee C H, Yap S L, Lee Y S, Tou T Y and Yap S S 2015 The growth of nanostructured Cu2ZnSnS4 films by pulsed laser deposition Appl. Surf. Sci. 354 42–47
Vanalakar S A et al 2015 A review on pulsed laser deposited CZTS thin films for solar cell applications J. Alloys Compd. 619 109
Schou J et al 2018 Pulsed laser deposition of chalcogenide sulfides from multi- and single-component targets: the non-stoichiometric material transfer Appl. Phys. A 124 78
Jin X et al 2016 Pulsed laser deposition of Cu2ZnSn(SxSe(1−x))4 thin film solar cells using quaternary oxide target prepared by combustion method Sol. Energy Mater. Sol. Cells 155 216
Altosaar M et al 2006 Cu2ZnSnSe4 monograin powder for solar cell application Conf. Record of the 2006 IEEE 4th World Conf. on Photovoltaic Energy Conversion (Waikoloa, HI, 07–12 May) (IEEE Electron Devices Society) 468
Altosaar M et al 2008 Cu2Zn1−xCdxSn(Se1−ySy)4 solid solutions as absorber materials for solar cells Phys. Status Solidi a 205 167
Grossberg M, Krustok J, Timmo K and Altosaar M 2009 Radiative recombination in Cu2ZnSnSe4 monograins studied by photoluminescence spectroscopy Thin Solid Films 517 2489
Timmo K et al 2010 Sulfur-containing Cu2ZnSnSe4 monograin powders for solar cells Sol. Energy Mater. Sol. Cells 94 1889
Grossberg M et al 2011 Photoluminescence and Raman study of Cu2ZnSn(SexS1−x)4 monograins for photovoltaic applications Thin Solid Films 519 7403
Danilson M et al 2011 XPS study of CZTSSe monograin powders Thin Solid Films 519 7407
Timmo K et al 2010 Chemical etching of Cu2ZnSn(S,Se)4 monograin powder 2010 35th IEEE Photovoltaic Specialists Conf. (Piscataway, NJ: IEEE) 001982
Kauk M et al 2011 Effects of sulphur and tin disulphide vapour treatments of Cu2ZnSnS(Se)4 absorber materials for monograin solar cells Energy Proc. 10 197
Klinkert T et al 2016 New insights into the Mo/Cu(In,Ga)Se2 interface in thin film solar cells: formation and properties of the MoSe2 interfacial layer J. Chem. Phys. 145 154702
Kim S, Oh M and Kim W K 2013 Effect of Sn-layer addition to precursors on characteristics of Cu2ZnSn(S,Se)4 thin-film solar cell absorber Thin Solid Films 549 59
Yin X et al 2015 Significantly different mechanical properties and interfacial structures of Cu2ZnSn(S,Se)4 films prepared from metallic and sulfur-contained precursors Sol. Energy Mater. Sol. Cells 134 389
López-Marino S et al 2013 Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer J. Mater. Chem. A 1 8338
Yan C et al 2017 Boost VOC of pure sulfide kesterite solar cell via a double CZTS layer stacks Sol. Energy Mater. Sol. Cells 160 7
Thersleff T et al 2017 Chemically and morphologically distinct grain boundaries in Ge-doped Cu2ZnSnSe4 solar cells revealed with STEM-EELS Mater. Des. 122 102–9
Hwang S et al 2015 Effects of a pre-annealing treatment (PAT) on Cu2ZnSn(S,Se)4 thin films prepared by rapid thermal processing (RTP) selenization Sol. Energy Mater. Sol. Cells 143 218
Wei Y et al 2018 Effects of selenium atmosphere on grain growth for CZTSe absorbers fabricated by selenization of as-sputtered precursors J. Alloys Compd. 755 224
Abusnina M et al 2015 IEEE 42nd Photovolt. Spec. Conf. p 1
López-Marino S et al 2013 Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer J. Mater. Chem. A 1 8338
Zhuk S et al 2019 Effect of TaN intermediate layer on the back contact reaction of sputter-deposited Cu poor Cu2ZnSnS4 and Mo Appl. Surf. Sci. 471 277
Guo H et al 2018 Dual function of ultrathin Ti intermediate layers in CZTS solar cells Sulfur blocking and charge enhancement Sol. Energy Mater. Sol. Cells 175 20
Giraldo S et al 2016 Cu2ZnSnSe4 solar cells with 10.6% efficiency through innovative absorber engineering with Ge superficial nanolayer Prog. Photovolt. Res. Appl. 24 1359
Giraldo S et al 2015 Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer Adv. Energy Mater. 5 1501070
Yan C et al 2017 Beyond 11% efficient sulfide kesterite Cu2ZnxCd1−xSnS4 solar cell: effects of cadmium alloying ACS Energy Lett. 2 930
Romeo A et al 2004 Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells Prog. Photovolt. Res. Appl. 12 93
Jackson P et al 2016 Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% Phys. Status Solidi 10 583
Kato T, Wu J-L, Hirai Y, Sugimoto H and Bermudez V 2019 Record efficiency for thin-film polycrystalline solar cells up to 22.9%; achieved by Cs-Treated Cu(In,Ga)(Se,S)2 IEEE J. Photovolt. 9 325
Sutter-Fella C M et al 2014 Sodium assisted sintering of chalcogenides and its application to solution processed Cu2ZnSn(S,Se)4 thin film solar cells Chem. Mater. 26 1420
Hages C J et al 2017 Identifying the real minority carrier lifetime in nonideal semiconductors: a case study of kesterite materials Adv. Energy Mater. 7 1700167
Bras P, Sterner J and Platzer-Björkman C 2015 Influence of hydrogen sulfide annealing on copper-zinc-tin-sulfide solar cells sputtered from a quaternary compound target Thin Solid Films 582 233
Singh O P, Gour K S, Parmar R and Singh V N 2016 Sodium induced grain growth, defect passivation and enhancement in the photovoltaic properties of Cu2ZnSnS4 thin film solar cell Mater. Chem. Phys. 177 293
Yuan L et al 2016 Investigation of sodium distribution in CuZnSnS thin films and its effects on the performance of the solar cells Mater. Res. Bull. 84 314
Sun K et al 2016 Influence of sodium incorporation on kesterite Cu2ZnSnS4 solar cells fabricated on stainless steel substrates Sol. Energy Mater. Sol. Cells 157 565
Tampo H, Kim K M, Kim S, Shibata H and Niki S 2017 Improvement of minority carrier lifetime and conversion efficiency by Na incorporation in Cu2ZnSnSe4 solar cells J. Appl. Phys. 122 023106
López-Marino S et al 2016 Alkali doping strategies for flexible and light-weight Cu2ZnSnSe4 solar cells J. Mater. Chem. A 4 1895
Giraldo S et al 2019 Progress and perspectives of thin film kesterite photovoltaic technology: a critical review Adv. Mater. 43 1806692
Gershon T et al 2016 Photovoltaic materials and devices based on the alloyed kesterite absorber (AgxCu1−x)2ZnSnSe4 Adv. Energy Mater. 6 1502468
Pilvet M et al 2015 Compositionally tunable structure and optical properties of Cu1.85(CdxZn1−x)1.1SnS4.1 (0 < x < 1) monograin powders Thin Solid Films 582 180–3
Oueslati S et al 2019 Effect of germanium incorporation on the properties of kesterite Cu2ZnSn(S,Se)4 monograins Thin Solid Films 669 315
Kim J et al 2018 High photo-conversion efficiency Cu2ZnSn(S,Se)4 thin-film solar cells prepared by compound-precursors and metal-precursors Sol. Energy Mater. Sol. Cells 183 129
Xie H et al 2015 Formation and impact of secondary phases in Cu-poor Zn-rich Cu2ZnSn(S1−ySey)4 (0 y 1) based solar cells Sol. Energy Mater. Sol. Cells 140 289
He J et al 2012 Single-step preparation and characterization of Cu2ZnSn(SxSe1−x)4 thin films deposited by pulsed laser deposition method J. Alloys Compd. 529 34
Marquez J et al 2017 Chemistry and dynamics of Ge in kesterite: toward band-gap-graded absorbers Chem. Mater. 29 9399
Hiroi H, Sakai N and Sugimoto H 2011 Cd-free 5 × 5cm2-sized Cu2ZnSnS4 submodules 2011 37th IEEE Photovoltaic Specialists Conf. (Piscataway, NJ: IEEE) pp 002719–22
Hiroi H, Sakai N, Muraoka S, Katou T and Sugimoto H 2012 Development of high efficiency Cu2ZnSnS4 submodule with Cd-free buffer layer 2012 38th IEEE Photovoltaic Specialists Conf. (Piscataway, NJ: IEEE) 001811
Sugimoto H, Hiroi H, Sakai N, Muraoka S and Katou T 2012 Over 8% efficiency Cu2ZnSnS4 submodules with ultra-thin absorber 2012 38th IEEE Photovoltaic Specialists Conf. (Piscataway, NJ: IEEE) 002997