[en] The study of human cortical development has major implications for brain evolution and diseases but has remained elusive due to paucity of experimental models. Here we found that human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), cultured without added morphogens, recapitulate corticogenesis leading to the sequential generation of functional pyramidal neurons of all six layer identities. After transplantation into mouse neonatal brain, human ESC-derived cortical neurons integrated robustly and established specific axonal projections and dendritic patterns corresponding to native cortical neurons. The differentiation and connectivity of the transplanted human cortical neurons complexified progressively over several months in vivo, culminating in the establishment of functional synapses with the host circuitry. Our data demonstrate that human cortical neurons generated in vitro from ESC/iPSC can develop complex hodological properties characteristic of the cerebral cortex in vivo, thereby offering unprecedented opportunities for the modeling of human cortex diseases and brain repair.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Espuny Camacho, Ira Mercedes ; Université Libre de Bruxelles (U.L.B.), B-1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI),
Michelsen, K.A; Université Libre de Bruxelles (U.L.B.), B-1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI
Gall, D; Université Libre de Bruxelles (U.L.B.), B-1070 Brussels, Belgium > Laboratory of Neurophisiology, and ULB Neuroscience Institute (UNI)
Linaro, D; University of Antwerp,B-2610 Wilrijk, Belgium > Theoretical Neurobiology and Neuroengineering Laboratory, Department of Biomedical Sciences
Hasche, A; Université Libre de Bruxelles (U.L.B.), B-1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI)
Bonnefont, J; Université Libre de Bruxelles (U.L.B.), B-1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI)
Bali, C; Université Libre de Bruxelles (U.L.B.), B-1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI)
Orduz, D; Université Libre de Bruxelles (U.L.B.), B-1070 Brussels, Belgium > Laboratory of Neurophisiology, and ULB Neuroscience Institute (UNI)
Bilheu, A; Université Libre de Bruxelles (U.L.B.), B-1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI)
Herpoel, A; Université Libre de Bruxelles (U.L.B.), B-1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI)
Lambert, N; Université Libre de Bruxelles (U.L.B.), B-1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI)
Gaspard, N; Université Libre de Bruxelles (U.L.B.), B-1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI)
Perón, S; University of Poitiers, F-86022 Poitiers, France > Experimental and Clinical Neurosciences Laboratory, Cellular Therapies in Brain Diseases group
Schiffmann, SN; Laboratory of Neurophysiology and ULB Neuroscience Institute (UNI) > Université Libre de Bruxelles (U.L.B.), B-1070 Brussels, Belgium
Giugliano, M; University of Antwerp,B-2610 Wilrijk, Belgium > Theoretical Neurobiology and Neuroengineering Laboratory, Department of Biomedical Sciences
Gaillard, A; University of Poitiers, F-86022 Poitiers, France > Experimental and Clinical Neurosciences Laboratory, Cellular Therapies in Brain Diseases group
Vanderhaeghen; Université Libre de Bruxelles (U.L.B.), B-1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI)
Alcamo, E.A., Chirivella, L., Dautzenberg, M., Dobreva, G., Fariñas, I., Grosschedl, R., McConnell, S.K., Satb2 regulates callosal projection neuron identity in the developing cerebral cortex (2008) Neuron, 57, pp. 364-377
Barnes, A.P., Polleux, F., Establishment of axon-dendrite polarity in developing neurons (2009) Annu. Rev. Neurosci., 32, pp. 347-381
Bedogni, F., Hodge, R.D., Elsen, G.E., Nelson, B.R., Daza, R.A., Beyer, R.P., Bammler, T.K., Hevner, R.F., Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 13129-13134
Bystron, I., Rakic, P., Molnár, Z., Blakemore, C., The first neurons of the human cerebral cortex (2006) Nat. Neurosci., 9, pp. 880-886
Bystron, I., Blakemore, C., Rakic, P., Development of the human cerebral cortex: Boulder Committee revisited (2008) Nat. Rev. Neurosci., 9, pp. 110-122
Caviness, V.S., Takahashi, T., Nowakowski, R.S., Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model (1995) Trends Neurosci., 18, pp. 379-383
Chambers, S.M., Fasano, C.A., Papapetrou, E.P., Tomishima, M., Sadelain, M., Studer, L., Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling (2009) Nat. Biotechnol., 27, pp. 275-280
Defelipe, J., The evolution of the brain, the human nature of cortical circuits, and intellectual creativity (2011) Front Neuroanat, 5, p. 29
Dolmetsch, R., Geschwind, D.H., The human brain in a dish: the promise of iPSC-derived neurons (2011) Cell, 145, pp. 831-834
Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., Kawada, M., Yonemura, S., Matsumura, M., Wataya, T., Sasai, Y., Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals (2008) Cell Stem Cell, 3, pp. 519-532
Fietz, S.A., Kelava, I., Vogt, J., Wilsch-Bräuninger, M., Stenzel, D., Fish, J.L., Corbeil, D., Huttner, W.B., OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling (2010) Nat. Neurosci., 13, pp. 690-699
Fish, J.L., Dehay, C., Kennedy, H., Huttner, W.B., Making bigger brains-the evolution of neural-progenitor-cell division (2008) J. Cell Sci., 121, pp. 2783-2793
Gaillard, A., Gaillard, F., Roger, M., Neocortical grafting to newborn and adult rats: developmental, anatomical and functional aspects (1998) Adv. Anat. Embryol. Cell Biol., 148, pp. 1-86
Gaillard, A., Prestoz, L., Dumartin, B., Cantereau, A., Morel, F., Roger, M., Jaber, M., Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons (2007) Nat. Neurosci., 10, pp. 1294-1299
Gaspard, N., Vanderhaeghen, P., Laminar fate specification in the cerebral cortex (2011) F1000 Biol. Rep., 3, p. 6
Gaspard, N., Bouschet, T., Hourez, R., Dimidschstein, J., Naeije, G., van den Ameele, J., Espuny-Camacho, I., Schiffmann, S.N., An intrinsic mechanism of corticogenesis from embryonic stem cells (2008) Nature, 455, pp. 351-357
Gaspard, N., Bouschet, T., Herpoel, A., Naeije, G., van den Ameele, J., Vanderhaeghen, P., Generation of cortical neurons from mouse embryonic stem cells (2009) Nat. Protoc., 4, pp. 1454-1463
Han, S.S., Williams, L.A., Eggan, K.C., Constructing and deconstructing stem cell models of neurological disease (2011) Neuron, 70, pp. 626-644
Hand, R., Bortone, D., Mattar, P., Nguyen, L., Heng, J.I., Guerrier, S., Boutt, E., Parras, C., Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex (2005) Neuron, 48, pp. 45-62
Hansen, D.V., Lui, J.H., Parker, P.R., Kriegstein, A.R., Neurogenic radial glia in the outer subventricular zone of human neocortex (2010) Nature, 464, pp. 554-561
Hansen, D.V., Rubenstein, J.L., Kriegstein, A.R., Deriving excitatory neurons of the neocortex from pluripotent stem cells (2011) Neuron, 70, pp. 645-660
Hébert, J.M., Fishell, G., The genetics of early telencephalon patterning: some assembly required (2008) Nat. Rev. Neurosci., 9, pp. 678-685
Hevner, R.F., From radial glia to pyramidal-projection neuron: transcription factor cascades in cerebral cortex development (2006) Mol. Neurobiol., 33, pp. 33-50
Hill, R.S., Walsh, C.A., Molecular insights into human brain evolution (2005) Nature, 437, pp. 64-67
Ideguchi, M., Palmer, T.D., Recht, L.D., Weimann, J.M., Murine embryonic stem cell-derived pyramidal neurons integrate into the cerebral cortex and appropriately project axons to subcortical targets (2010) J. Neurosci., 30, pp. 894-904
Inoue, T., Nakamura, S., Osumi, N., Fate mapping of the mouse prosencephalic neural plate (2000) Dev. Biol., 219, pp. 373-383
Johnson, M.B., Kawasawa, Y.I., Mason, C.E., Krsnik, Z., Coppola, G., Bogdanović, D., Geschwind, D.H., Sestan, N., Functional and evolutionary insights into human brain development through global transcriptome analysis (2009) Neuron, 62, pp. 494-509
Lambert, N., Lambot, M.A., Bilheu, A., Albert, V., Englert, Y., Libert, F., Noel, J.C., Pollard, K.S., Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution (2011) PLoS ONE, 6, pp. e17753
Leone, D.P., Srinivasan, K., Chen, B., Alcamo, E., McConnell, S.K., The determination of projection neuron identity in the developing cerebral cortex (2008) Curr. Opin. Neurobiol., 18, pp. 28-35
Li, X.J., Zhang, X., Johnson, M.A., Wang, Z.B., Lavaute, T., Zhang, S.C., Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells (2009) Development, 136, pp. 4055-4063
Lui, J.H., Hansen, D.V., Kriegstein, A.R., Development and evolution of the human neocortex (2011) Cell, 146, pp. 18-36
Marchetto, M.C., Winner, B., Gage, F.H., Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases (2010) Hum. Mol. Genet., 19 (1 R), pp. R71-R76
McCormick, D.A., Connors, B.W., Lighthall, J.W., Prince, D.A., Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex (1985) J. Neurophysiol., 54, pp. 782-806
McKenna, W.L., Betancourt, J., Larkin, K.A., Abrams, B., Guo, C., Rubenstein, J.L., Chen, B., Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development (2011) J. Neurosci., 31, pp. 549-564
Molnár, Z., Cheung, A.F., Towards the classification of subpopulations of layer V pyramidal projection neurons (2006) Neurosci. Res., 55, pp. 105-115
Molyneaux, B.J., Arlotta, P., Menezes, J.R., Macklis, J.D., Neuronal subtype specification in the cerebral cortex (2007) Nat. Rev. Neurosci., 8, pp. 427-437
O'Leary, D.D., Sahara, S., Genetic regulation of arealization of the neocortex (2008) Curr. Opin. Neurobiol., 18, pp. 90-100
Okano, H., Temple, S., Cell types to order: temporal specification of CNS stem cells (2009) Curr. Opin. Neurobiol., 19, pp. 112-119
Paxinos, G.F., Franklin, K.B.J., (1997) The Mouse Brain in Stereotaxic Coordinates, , Academic Press, San Diego, CA
Pera, M.F., Andrade, J., Houssami, S., Reubinoff, B., Trounson, A., Stanley, E.G., Ward-van Oostwaard, D., Mummery, C., Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin (2004) J. Cell Sci., 117, pp. 1269-1280
Petanjek, Z., JudaŠ, M., Šimic, G., Rasin, M.R., Uylings, H.B., Rakic, P., Kostovic, I., Extraordinary neoteny of synaptic spines in the human prefrontal cortex (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 13281-13286
Pinaudeau, C., Gaillard, A., Roger, M., Stage of specification of the spinal cord and tectal projections from cortical grafts (2000) Eur. J. Neurosci., 12, pp. 2486-2496
Pollard, K.S., Salama, S.R., Lambert, N., Lambot, M.A., Coppens, S., Pedersen, J.S., Katzman, S., Siepel, A., An RNA gene expressed during cortical development evolved rapidly in humans (2006) Nature, 443, pp. 167-172
Rakic, P., A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution (1995) Trends Neurosci., 18, pp. 383-388
Rakic, P., Evolution of the neocortex: a perspective from developmental biology (2009) Nat. Rev. Neurosci., 10, pp. 724-735
Reyes, A., Sakmann, B., Developmental switch in the short-term modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex (1999) J. Neurosci., 19, pp. 3827-3835
Shi, Y., Kirwan, P., Smith, J., Robinson, H.P., Livesey, F.J., Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses (2012) Nat. Neurosci., 15, pp. 477-486. , S1
Sudmant, P.H., Kitzman, J.O., Antonacci, F., Alkan, C., Malig, M., Tsalenko, A., Sampas, N., Eichler, E.E., Diversity of human copy number variation and multicopy genes (2010) Science, 330, pp. 641-646. , 1000 Genomes Project
Sur, M., Rubenstein, J.L., Patterning and plasticity of the cerebral cortex (2005) Science, 310, pp. 805-810
Vanderhaeghen, P., Polleux, F., Developmental mechanisms patterning thalamocortical projections: intrinsic, extrinsic and in between (2004) Trends Neurosci., 27, pp. 384-391
Walther, C., Gruss, P., Pax-6, a murine paired box gene, is expressed in the developing CNS (1991) Development, 113, pp. 1435-1449
Wang, Y., Markram, H., Goodman, P.H., Berger, T.K., Ma, J., Goldman-Rakic, P.S., Heterogeneity in the pyramidal network of the medial prefrontal cortex (2006) Nat. Neurosci., 9, pp. 534-542
Wilson, S.W., Houart, C., Early steps in the development of the forebrain (2004) Dev. Cell, 6, pp. 167-181
Zeng, H., Guo, M., Martins-Taylor, K., Wang, X., Zhang, Z., Park, J.W., Zhan, S., Liu, H.X., Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells (2010) PLoS ONE, 5, pp. e11853
Zhang, X., Huang, C.T., Chen, J., Pankratz, M.T., Xi, J., Li, J., Yang, Y., Ayala, M., Pax6 is a human neuroectoderm cell fate determinant (2010) Cell Stem Cell, 7, pp. 90-100