[en] Pluripotent stem-cell-derived neurons constitute an attractive source for replacement therapies, but their utility remains unclear for cortical diseases. Here, we show that neurons of visual cortex identity, differentiated in vitro from mouse embryonic stem cells (ESCs), can be transplanted successfully following a lesion of the adult mouse visual cortex. Reestablishment of the damaged pathways included long-range and reciprocal axonal projections and synaptic connections with targets of the damaged cortex. Electrophysiological recordings revealed that some grafted neurons were functional and responsive to visual stimuli. No significant integration was observed following grafting of the same neurons in motor cortex, or transplantation of embryonic motor cortex in visual cortex, indicating that successful transplantation required a match in the areal identity of grafted and lesioned neurons. These findings demonstrate that transplantation of mouse ESC-derived neurons of appropriate cortical areal identity can contribute to the reconstruction of an adult damaged cortical circuit.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Michelsen, KA; Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM)
Acosta-Verdugo, S; Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM)
Benoit-Marand, M; University of Poitiers, Poitiers Cedex, France > Experimental and Clinical Neurosciences Laboratory, Cellular Therapies in Brain Diseases Group
Espuny Camacho, Ira Mercedes ; Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM)
Gaspard, N; Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM)
Saha, B; University of Poitiers, Poitiers Cedex, France > Experimental and Clinical Neurosciences Laboratory, Cellular Therapies in Brain Diseases Group
Gaillard, A; University of Poitiers, Poitiers Cedex, France > Experimental and Clinical Neurosciences Laboratory, Cellular Therapies in Brain Diseases Group
Vanderhaeghen, P; Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium > Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM)
Language :
English
Title :
Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells
Aboody K., Capela A., Niazi N., Stern J.H., Temple S. Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a Rosetta stone. Neuron 2011, 70:597-613.
Anderson S., Vanderhaeghen P. Cortical neurogenesis from pluripotent stem cells: complexity emerging from simplicity. Curr. Opin. Neurobiol. 2014, 27:151-157.
Arlotta P., Berninger B. Brains in metamorphosis: reprogramming cell identity within the central nervous system. Curr. Opin. Neurobiol. 2014, 27:208-214.
Cang J., Kaneko M., Yamada J., Woods G., Stryker M.P., Feldheim D.A. Ephrin-as guide the formation of functional maps in the visual cortex. Neuron 2005, 48:577-589.
Chiba S., Ikeda R., Kurokawa M.S., Yoshikawa H., Takeno M., Nagafuchi H., Tadokoro M., Sekino H., Hashimoto T., Suzuki N. Anatomical and functional recovery by embryonic stem cell-derived neural tissue of a mouse model of brain damage. J.Neurol. Sci. 2004, 219:107-117.
Cusulin C., Monni E., Ahlenius H., Wood J., Brune J.C., Lindvall O., Kokaia Z. Embryonic stem cell-derived neural stem cells fuse with microglia and mature neurons. Stem Cells 2012, 30:2657-2671.
Dunnett S.B., Ryan C.N., Levin P.D., Reynolds M., Bunch S.T. Functional consequences of embryonic neocortex transplanted to rats with prefrontal cortex lesions. Behav. Neurosci. 1987, 101:489-503.
Ebrahimi-Gaillard A., Beck T., Gaillard F., Wree A., Roger M. Transplants of embryonic cortical tissue placed in the previously damaged frontal cortex of adult rats: local cerebral glucose utilization following execution of forelimb movements. Neuroscience 1995, 64:49-60.
Eiraku M., Watanabe K., Matsuo-Takasaki M., Kawada M., Yonemura S., Matsumura M., Wataya T., Nishiyama A., Muguruma K., Sasai Y. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 2008, 3:519-532.
Espuny-Camacho I., Michelsen K.A., Gall D., Linaro D., Hasche A., Bonnefont J., Bali C., Orduz D., Bilheu A., Herpoel A., et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits invivo. Neuron 2013, 77:440-456.
Fricker-Gates R.A., Shin J.J., Tai C.C., Catapano L.A., Macklis J.D. Late-stage immature neocortical neurons reconstruct interhemispheric connections and form synaptic contacts with increased efficiency in adult mouse cortex undergoing targeted neurodegeneration. J.Neurosci. 2002, 22:4045-4056.
Friling S., Andersson E., Thompson L.H., Jönsson M.E., Hebsgaard J.B., Nanou E., Alekseenko Z., Marklund U., Kjellander S., Volakakis N., et al. Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc. Natl. Acad. Sci. USA 2009, 106:7613-7618.
Gaillard A., Jaber M. Is the outgrowth of transplant-derived axons guided by host astrocytes and myelin loss?. Cell Adhes. Migr. 2007, 1:161-164.
Gaillard A., Jaber M. Rewiring the brain with cell transplantation in Parkinson's disease. Trends Neurosci. 2011, 34:124-133.
Gaillard A., Gaillard F., Roger M. Neocortical grafting to newborn and adult rats: developmental, anatomical and functional aspects. Adv. Anat. Embryol. Cell Biol. 1998, 148:1-86.
Gaillard F., Girman S.V., Gaillard A. Afferents to visually responsive grafts of embryonic occipital neocortex tissue implanted into V1 (Oc1) cortical area of adult rats. Restor. Neurol. Neurosci. 1998, 12:13-25.
Gaillard A., Nasarre C., Roger M. Early (E12) cortical progenitors can change their fate upon heterotopic transplantation. Eur. J. Neurosci. 2003, 17:1375-1383.
Gaillard F., Domballe L., Gaillard A. Fetal cortical allografts project massively through the adult cortex. Neuroscience 2004, 126:631-637.
Gaillard A., Prestoz L., Dumartin B., Cantereau A., Morel F., Roger M., Jaber M. Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons. Nat. Neurosci. 2007, 10:1294-1299.
Gaspard N., Bouschet T., Hourez R., Dimidschstein J., Naeije G., van den Ameele J., Espuny-Camacho I., Herpoel A., Passante L., Schiffmann S.N., et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 2008, 455:351-357.
Gaspard N., Bouschet T., Herpoel A., Naeije G., van den Ameele J., Vanderhaeghen P. Generation of cortical neurons from mouse embryonic stem cells. Nat. Protoc. 2009, 4:1454-1463.
Gaspard N., Gaillard A., Vanderhaeghen P. Making cortex in adish: invitro corticopoiesis from embryonic stem cells. Cell Cycle 2009, 8:2491-2496.
Girman S.V. Neocortical grafts receive functional afferents from the same neurons of the thalamus which have innervated the visual cortex replaced by the graft in adult rats. Neuroscience 1994, 60:989-997.
Girman S.V., Golovina I.L. Electrophysiological properties of embryonic neocortex transplants replacing the primary visual cortex of adult rats. Brain Res. 1990, 523:78-86.
Guitet J., Garnier C., Ebrahimi-Gaillard A., Roger M. Efferents of frontal or occipital cortex grafted into adult rat's motor cortex. Neurosci. Lett. 1994, 180:265-268.
Hargus G., Cooper O., Deleidi M., Levy A., Lee K., Marlow E., Yow A., Soldner F., Hockemeyer D., Hallett P.J., et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl. Acad. Sci. USA 2010, 107:15921-15926.
Henny P., Brown M.T., Northrop A., Faunes M., Ungless M.A., Magill P.J., Bolam J.P. Structural correlates of heterogeneous invivo activity of midbrain dopaminergic neurons. Nat. Neurosci. 2012, 15:613-619.
Hernit-Grant C.S., Macklis J.D. Embryonic neurons transplanted to regions of targeted photolytic cell death in adult mouse somatosensory cortex re-form specific callosal projections. Exp. Neurol. 1996, 139:131-142.
Ideguchi M., Palmer T.D., Recht L.D., Weimann J.M. Murine embryonic stem cell-derived pyramidal neurons integrate into the cerebral cortex and appropriately project axons to subcortical targets. J.Neurosci. 2010, 30:894-904.
Isacson O., Wictorin K., Fischer W., Sofroniew M.V., Björklund A. Fetal cortical cell suspension grafts to the excitotoxically lesioned neocortex: anatomical and neurochemical studies of trophic interactions. Prog. Brain Res. 1988, 78:13-26.
Kim J.H., Auerbach J.M., Rodríguez-Gómez J.A., Velasco I., Gavin D., Lumelsky N., Lee S.H., Nguyen J., Sánchez-Pernaute R., Bankiewicz K., McKay R. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 2002, 418:50-56.
Knöll B., Isenmann S., Kilic E., Walkenhorst J., Engel S., Wehinger J., Bähr M., Drescher U. Graded expression patterns of ephrin-As in the superior colliculus after lesion of the adult mouse optic nerve. Mech. Dev. 2001, 106:119-127.
Kriks S., Shim J.W., Piao J., Ganat Y.M., Wakeman D.R., Xie Z., Carrillo-Reid L., Auyeung G., Antonacci C., Buch A., et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 2011, 480:547-551.
Lamba D.A., Gust J., Reh T.A. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 2009, 4:73-79.
Lane E.L., Björklund A., Dunnett S.B., Winkler C. Neural grafting in Parkinson's disease unraveling the mechanisms underlying graft-induced dyskinesia. Prog. Brain Res. 2010, 184:295-309.
Ma L., Hu B., Liu Y., Vermilyea S.C., Liu H., Gao L., Sun Y., Zhang X., Zhang S.C. Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 2012, 10:455-464.
Madisen L., Zwingman T.A., Sunkin S.M., Oh S.W., Zariwala H.A., Gu H., Ng L.L., Palmiter R.D., Hawrylycz M.J., Jones A.R., et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 2010, 13:133-140.
O'Leary D.D., Sahara S. Genetic regulation of arealization of the neocortex. Curr. Opin. Neurobiol. 2008, 18:90-100.
O'Leary D.D., Chou S.J., Sahara S. Area patterning of the mammalian cortex. Neuron 2007, 56:252-269.
Pinaudeau C., Gaillard A., Roger M. Stage of specification of the spinal cord and tectal projections from cortical grafts. Eur. J. Neurosci. 2000, 12:2486-2496.
Pinault D. A novel single-cell staining procedure performed invivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J.Neurosci. Methods 1996, 65:113-136.
Roy N.S., Cleren C., Singh S.K., Yang L., Beal M.F., Goldman S.A. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med. 2006, 12:1259-1268.
Santos-Torres J., Heredia M., Riolobos A.S., Jiménez-Díaz L., Gómez-Bautista V., de la Fuente A., Criado J.M., Navarro-López J., Yajeya J. Electrophysiological and synaptic characterization of transplanted neurons in adult rat motor cortex. J.Neurotrauma 2009, 26:1593-1607.
Schwarcz R., Hökfelt T., Fuxe K., Jonsson G., Goldstein M., Terenius L. Ibotenic acid-induced neuronal degeneration: a morphological and neurochemical study. Exp. Brain Res. 1979, 37:199-216.
Sheen V.L., Arnold M.W., Wang Y., Macklis J.D. Neural precursor differentiation following transplantation into neocortex is dependent on intrinsic developmental state and receptor competence. Exp. Neurol. 1999, 158:47-62.
Shi Y., Kirwan P., Smith J., Robinson H.P., Livesey F.J. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat. Neurosci. 2012, 15:477-486.
Sørensen J.C., Dalmau I., Zimmer J., Finsen B. Microglial reactions to retrograde degeneration of tracer-identified thalamic neurons after frontal sensorimotor cortex lesions in adult rats. Exp. Brain Res. 1996, 112:203-212.
Sørensen J.C., Grabowski M., Zimmer J., Johansson B.B. Fetal neocortical tissue blocks implanted in brain infarcts of adult rats interconnect with the host brain. Exp. Neurol. 1996, 138:227-235.
Sur M., Rubenstein J.L. Patterning and plasticity of the cerebral cortex. Science 2005, 310:805-810.
Tabar V., Panagiotakos G., Greenberg E.D., Chan B.K., Sadelain M., Gutin P.H., Studer L. Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat. Biotechnol. 2005, 23:601-606.
Tiberi L., van den Ameele J., Dimidschstein J., Piccirilli J., Gall D., Herpoel A., Bilheu A., Bonnefont J., Iacovino M., Kyba M., et al. BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nat. Neurosci. 2012, 15:1627-1635.
Tiberi L., Vanderhaeghen P., van den Ameele J. Cortical neurogenesis and morphogens: diversity of cues, sources and functions. Curr. Opin. Cell Biol. 2012, 24:269-276.
Tornero D., Wattananit S., Grønning Madsen M., Koch P., Wood J., Tatarishvili J., Mine Y., Ge R., Monni E., Devaraju K., et al. Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain 2013, 136:3561-3577.
Tseng K.Y., Mallet N., Toreson K.L., Le Moine C., Gonon F., O'Donnell P. Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation invivo. Synapse 2006, 59:412-417.
Tucker K.L., Meyer M., Barde Y.A. Neurotrophins are required for nerve growth during development. Nat. Neurosci. 2001, 4:29-37.
van den Ameele J., Tiberi L., Bondue A., Paulissen C., Herpoel A., Iacovino M., Kyba M., Blanpain C., Vanderhaeghen P. Eomesodermin induces Mesp1 expression and cardiac differentiation from embryonic stem cells in the absence of Activin. EMBO Rep. 2012, 13:355-362.
van den Ameele J., Tiberi L., Vanderhaeghen P., Espuny-Camacho I. Thinking out of the dish: what to learn about cortical development using pluripotent stem cells. Trends Neurosci. 2014, 37:334-342.
Vanderhaeghen P. Generation of cortical neurons from pluripotent stem cells. Prog. Brain Res. 2012, 201:183-195.
Vanderhaeghen P., Polleux F. Developmental mechanisms patterning thalamocortical projections: intrinsic, extrinsic and in between. Trends Neurosci. 2004, 27:384-391.
Wernig M., Zhao J.P., Pruszak J., Hedlund E., Fu D., Soldner F., Broccoli V., Constantine-Paton M., Isacson O., Jaenisch R. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc. Natl. Acad. Sci. USA 2008, 105:5856-5861.
Yang D., Zhang Z.J., Oldenburg M., Ayala M., Zhang S.C. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 2008, 26:55-63.
Ying Q.L., Nichols J., Evans E.P., Smith A.G. Changing potency by spontaneous fusion. Nature 2002, 416:545-548.