NOTICE: this is the author’s version of a work that was accepted for publication in European Journal of Mechanics / A Solids. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in European Journal of Mechanics / A Solids 78, 2019, 103847, doi: 10.1016/j.euromechsol.2019.103847
All documents in ORBi are protected by a user license.
[en] This paper presents an automated approach to build computationally Representative Volume Elements (RVE) of open-foam cellular materials, enabling the study of the effects of the microstructural features on their macroscopic behavior. The approach strongly relies on the use of distance and level set functions. The methodology is based on the extraction of random tessellations from inclusion packings following predetermined statistical packing distribution criteria. With the help of simple recombination operations on the distance fields, the tessellations are made to degenerate in Laguerre tessellations. Predetermined morphological characteristics like strut cross-section variation based on commercially available materials are applied on the RVE to ensure the extraction of closely matching models using simple surface extraction tools, and a detailed morphology quantification of the resulting RVEs is provided by comparing them with experimental observations. The extracted RVE surface is then treated with smoothening criteria before obtaining a 3D tetrahedralized model. This model can then be exported for multi-scale simulations to assess the effects of microstructural features by an upscaling methodology. The approach is illustrated by the simulation of a compression test on an RVE incorporating plasticity with geometrically non-linear behavior.
Research Center/Unit :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Mechanical engineering
Author, co-author :
Kilingar, Nanda Gopala ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Ehab Moustafa Kamel, Karim; Université Libre de Bruxelles - ULB > Building, Architecture & Town Planning Dept. > Structural and Material Computational mechanics
Sonon, Bernard; Université Libre de Bruxelles - ULB > Building, Architecture & Town Planning Dept. > Structural and Material Computational mechanics
Massart, Thierry Jacques; Université Libre de Bruxelles - ULB > Building, Architecture & Town Planning Department (BATir) > Structural and Material Computational mechanics
Noels, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
Computational generation of open-foam representative volume elements with morphological control using distance fields
A. Andreozzi, N. Bianco, M. Iasiello, V. Naso, Numerical study of metal foam heat sinks under uniform impinging flow, Journal of Physics: Conference Series 796 (2017) 012002. doi:10.1088/1742-6596/796/1/012002.
E. Andrews, W. Sanders, L. J. Gibson, Compressive and tensile behaviour of aluminum foams, Materials Science and Engineering: A 270 (2) (1999) 113-124. doi:10.1016/S0921-5093(99)00170-7.
M. F. Ashby, R. M. Medalist, The mechanical properties of cellular solids, Metallurgical Transactions A 14 (9) (1983) 1755-1769.
A. J. Baddeley, Spatial sampling and censoring, Stochastic geometry: likelihood and computation 2 (1999) 37-78.
K. Bagi, An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies, Granular Matter 7 (1) (2005) 31-43. doi:10.1007/s10035-004-0187-5.
J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Progress in materials science 46 (6) (2001) 559-632.
C. B. Barber, D. P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Transactions on Mathematical Software 22 (4) (1996) 469-483. doi:10.1145/235815.235821.
G. Bernstein, D. Fussell, Fast, exact, linear booleans, in: Computer Graphics Forum, Vol. 28, Wiley Online Library, 2009, pp. 1269-1278.
A. Bezrukov, M. Bargiel, D. Stoyan, Statistical Analysis of Simulated Random Packings of Spheres, Part. Part. Syst. Charact. 19 (2) (2002) 111-118. doi:10.1002/1521-4117(200205)19:2<111::AID-PPSC111>3.0.CO;2-M.
K. A. Brakke, Minimal surfaces, corners, and wires, Journal of Geometric Analysis 2 (1) (1992) 11-36.
R. Destefanis, F. Schafer, M. Lambert, M. Faraud, Selecting enhanced space debris shields for manned spacecraft, International Journal of Impact Engineering 33 (1-12) (2006) 219-230. doi:10.1016/j.ijimpeng.2006.09.065.
P. Di Giorgio, M. Iasiello, A. Viglione, M. Mameli, S. Filippeschi, P. Di Marco, A. Andreozzi, N. Bianco, Numerical Analysis of a Paraffin/Metal Foam Composite for Thermal Storage, Journal of Physics: Conference Series 796 (2017) 012032. doi:10.1088/1742-6596/796/1/012032.
K. Ehab Moustafa Kamel, B. Sonon, T. J. Massart, An integrated approach for the generation and conformal discretization of complex inclusion-based microstructures, In Pressdoi:10.1007/s00466-019-01693-4.
Z. Fan, Y. Wu, X. Zhao, Y. Lu, Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres, Computational Materials Science 29 (3) (2004) 301-308. doi:10.1016/j.commatsci.2003.10.006.
T. Fiedler, E. Solorzano, F. Garcia-Moreno, A. Ochsner, I. Belova, G. Murch, Computed tomography based finite element analysis of the thermal properties of cellular aluminium, Materialwissenschaft und Werkstofftechnik 40 (3) (2009) 139-143. doi:10.1002/mawe.200900419.
T. Fiedler, I. Belova, G. Murch, μ-CT-based finite element analysis on imperfections in open-celled metal foam: Mechanical properties, Scripta Materialia 67 (5) (2012) 455-458. doi:10.1016/j.scriptamat.2012.06.002.
L. J. Gibson, M. F. Ashby, Cellular Solids: Structure and Properties, 2nd Edition, Cambridge University Press, Cambridge, 1997. doi:10.1017/CBO9781139878326.
L. Gong, S. Kyriakides, Compressive response of open cell foams Part II: Initiation and evolution of crushing, International Journal of Solids and Structures 42 (5-6) (2005) 1381-1399. doi:10.1016/j.ijsolstr.2004.07.024.
L. Gong, S. Kyriakides, W. Y. Jang, Compressive response of open-cell foams. Part I: Morphology and elastic properties, International Journal of Solids and Structures 42 (5) (2005) 1355-1379. doi:10.1016/j.ijsolstr.2004.07.023.
J. L. Grenestedt, K. Tanaka, Influence of cell shape variations on elastic stiffness of closed cell cellular solids, Scripta Materialia 40 (1) (1998) 71-77. doi:10.1016/S1359-6462(98)00401-1.
A. G. Hanssen, L. Enstock, M. Langseth, Close-range blast loading of aluminium foam panels, International Journal of Impact Engineering 27 (6) (2002) 593-618.
S. Heinze, T. Bleistein, A. Duster, S. Diebels, A. Jung, Experimental and numerical investigation of single pores for identification of effective metal foams properties: Experimental and numerical investigation of single pores for identification of effective metal foams properties, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift fur Angewandte Mathematik und Mechanik 98 (5) (2018) 682-695. doi:10.1002/zamm.201700045.
A. M. Hodge, D. C. Dunand, Measurement and modeling of creep in open-cell NiAl foams, Metallurgical and Materials Transactions A 34 (10) (2003) 2353-2363.
S. J. Hollister, N. Kikuchi, A comparison of homogenization and standard mechanics analyses for periodic porous composites, Computational Mechanics 10 (2) (1992) 73-95.
W.-Y. Jang, S. Kyriakides, On the crushing of aluminum open-cell foams: Part I. Experiments, International Journal of Solids and Structures 46 (3-4) (2009) 617-634. doi:10.1016/j.ijsolstr.2008.09.008.
W.-Y. Jang, S. Kyriakides, On the crushing of aluminum open-cell foams: Part II analysis, International Journal of Solids and Structures 46 (3-4) (2009) 635-650. doi:10.1016/j.ijsolstr.2008.10.016.
W.-Y. Jang, A. M. Kraynik, S. Kyriakides, On the microstructure of open-cell foams and its effect on elastic properties, International Journal of Solids and Structures 45 (7) (2008) 1845-1875. doi:10.1016/j.ijsolstr.2007.10.008.
W.-Y. Jang, S. Kyriakides, A. M. Kraynik, On the compressive strength of open-cell metal foams with Kelvin and random cell structures, International Journal of Solids and Structures 47 (21) (2010) 2872-2883. doi:10.1016/j.ijsolstr.2010.06.014.
A. Jung, S. Diebels, Microstructural characterisation and experimental determination of a multiaxial yield surface for open-cell aluminium foams, Materials & Design 131 (2017) 252-264. doi:10.1016/j.matdes.2017.06.017.
A. Jung, H. Natter, S. Diebels, E. Lach, R. Hempelmann, Nanonickel Coated Aluminum Foam for Enhanced Impact Energy Absorption, Advanced Engineering Materials 13 (1-2) (2011) 23-28. doi:10.1002/adem.201000190.
S. Kanaun, O. Tkachenko, Mechanical Properties of Open Cell Foams: Simulations by Laguerre Tesselation Procedure, International Journal of Fracture 140 (1-4) (2006) 305-312. doi:10.1007/s10704-006-0112-5.
J. C. Kim, D. M. Martin, C. S. Lim, Effect of rearrangement on simulated particle packing, Powder technology 126 (3) (2002) 211-216.
A. M. Kraynik, The Structure of Random Foam, Adv. Eng. Mater. 8 (9) (2006) 900-906. doi:10.1002/adem.200600167.
A. M. Kraynik, D. A. Reinelt, F. van Swol, Structure of random monodisperse foam, Physical Review E 67 (3) (Mar. 2003). doi:10.1103/PhysRevE.67.031403.
A. Kraynik, D. Reinelt, F. van Swol, Structure of Random Foam, Physical Review Letters 93 (20) (Nov. 2004). doi:10.1103/PhysRevLett.93.208301.
C. Lautensack, Fitting three-dimensional Laguerre tessellations to foam structures, Journal of Applied Statistics 35 (9) (2008) 985-995. doi:10.1080/02664760802188112.
W. Li, Z. Qu, Y. He, W. Tao, Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin, Applied Thermal Engineering 37 (2012) 1-9. doi:10.1016/j.applthermaleng.2011.11.001.
A. Liebscher, Laguerre approximation of random foams, Philosophical Magazine 95 (25) (2015) 2777-2792. doi:10.1080/14786435.2015.1078511.
W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3D surface construction algorithm, ACM Press, 1987, pp. 163-169. doi:10.1145/37401.37422.
G. Ma, Z. Ye, Energy absorption of double-layer foam cladding for blast alleviation, International Journal of Impact Engineering 34 (2) (2007) 329-347. doi:10.1016/j.ijimpeng.2005.07.012.
M. Marvi-Mashhadi, C. S. Lopes, J. LLorca, Surrogate models of the influence of the microstructure on the mechanical properties of closed- and open-cell foams, Journal of Materials Science 53 (18) (2018) 12937-12948. doi:10.1007/s10853-018-2598-4.
T. Moller, A Fast Triangle-Triangle Intersection Test, Journal of Graphics Tools 2 (1997) 25-30. doi:10.1080/10867651.1997.10487472.
C. Monnereau, B. Prunet-Foch, M. Vignes-Adler, Topology of slightly polydisperse real foams, Physical Review E 63 (6) (May 2001). doi:10.1103/PhysRevE.63.061402.
M. D. Montminy, A. R. Tannenbaum, C. W. Macosko, The 3D structure of real polymer foams, Journal of Colloid and Interface Science 280 (1) (2004) 202-211. doi:10.1016/j.jcis.2004.07.032.
V.-D. Nguyen, L. Noels, Computational homogenization of cellular materials, International Journal of Solids and Structures 51 (11-12) (2014) 2183-2203. doi:10.1016/j.ijsolstr.2014.02.029.
V.-D. Nguyen, L. Wu, L. Noels, Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method, Computational Mechanics 59 (3) (2017) 483-505. doi:10.1007/s00466-016-1358-z.
C. Perrot, R. Panneton, X. Olny, Periodic unit cell reconstruction of porous media: Application to open-cell aluminum foams, Journal of Applied Physics 101 (11) (2007) 113538. doi:10.1063/1.2745095.
P.-O. Persson, G. Strang, A simple mesh generator in MATLAB, SIAM review 46 (2) (2004) 329-345.
J. A. F. Plateau, Statique Experimentale et Theorique Des Liquides Soumis Aux Seules Forces Moleculaires, Gauthier-Villars, 1873.
C. Redenbach, Microstructure models for cellular materials, Computational Materials Science 44 (4) (2009) 1397-1407. doi:10.1016/j.commatsci.2008.09.018.
J. R. Shewchuk, Constrained Delaunay Tetrahedralizations and Provably Good Boundary Recovery, IMR, 2002, p. 12.
W. H. Shih, F. C. Chou, W. H. Hsieh, Experimental Investigation of the Heat Transfer Characteristics of Aluminum-Foam Heat Sinks With Restricted Flow Outlet, Journal of Heat Transfer 129 (11) (2007) 1554. doi:10.1115/1.2759972.
H. Si, TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator, ACM Transactions on Mathematical Software 41 (2) (2015) 1-36. doi:10.1145/2629697.
B. Sonon, On advanced techniques for generation and discretization of the microstructure of complex heterogeneous materials, Ph.D. thesis, Universite libre de Bruxelles (2014).
B. Sonon, B. Francois, T. J. Massart, A unified level set based methodology for fast generation of complex microstructural multi-phase RVEs, Computer Methods in Applied Mechanics and Engineering 223-224 (2012) 103-122. doi:10.1016/j.cma.2012.02.018.
B. Sonon, B. Francois, T. J. Massart, An advanced approach for the generation of complex cellular material representative volume elements using distance fields and level sets, Computational Mechanics 56 (2) (2015) 221-242. doi:10.1007/s00466-015-1168-8.
W. Thomson, LXIII. On the division of space with minimum partitional area, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 24 (151) (1887) 503-514.
M. W. D. Van Der Burg, V. Shulmeister, E. Van Der Geissen, R. Marissen, On the Linear Elastic Properties of Regular and Random Open-Cell Foam Models, Journal of Cellular Plastics 33 (1) (1997) 31-54. doi:10.1177/0021955X9703300103.
I. Vecchio, C. Redenbach, K. Schladitz, Angles in Laguerre tessellation models for solid foams, Computational Materials Science 83 (2014) 171-184. doi:10.1016/j.commatsci.2013.11.017.
I. Vecchio, C. Redenbach, K. Schladitz, A. M. Kraynik, Improved models of solid foams based on soap froth, Computational Materials Science 120 (2016) 60-69. doi:10.1016/j.commatsci.2016.03.029.
C. Veyhl, I. Belova, G. Murch, T. Fiedler, Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography, Materials Science and Engineering: A 528 (13-14) (2011) 4550-4555. doi:10.1016/j.msea.2011.02.031.
H. Villafan-Vidales, S. Abanades, C. Caliot, H. Romero-Paredes, Heat transfer simulation in a thermochemical solar reactor based on a volumetric porous receiver, Applied Thermal Engineering 31 (16) (2011) 3377-3386. doi:10.1016/j.applthermaleng.2011.06.022.
F. Wan, M.-P. Tran, C. Leblanc, E. Bechet, E. Plougonven, A. Leonard, C. Detrembleur, L. Noels, J.-M. Thomassin, V.-D. Nguyen, Experimental and computational micro-mechanical investigations of compressive properties of polypropylene/multi-walled carbon nanotubes nanocomposite foams, Mechanics of Materials 91 (2015) 95-118. doi:10.1016/j.mechmat.2015.07.004.
D. Weaire, R. Phelan, A counter-example to Kelvin's conjecture on minimal surfaces, Philosophical Magazine Letters 69 (2) (1994) 107-110. doi:10.1080/09500839408241577.
B. Wintiba, B. Sonon, K. Ehab Moustafa Kamel, T. J. Massart, An automated procedure for the generation and conformal discretization of 3D woven composites RVEs, Composite Structures 180 (2017) 955-971. doi:10.1016/j.compstruct.2017.08.010.