[en] Combinations of different aromatic polymers and organic solvents have been studied as dispersing agents for preparing single-walled carbon nanotubes solutions, using optical absorbance, photoluminescence-excitation mapping, computer modeling, and electron microscopic imaging to characterize the solutions. Both the polymer structure and solvent used strongly influence the dispersion of the nanotubes, leading in some cases to very high selectivity in terms of diameter and chiral angle. The highest selectivities are observed using toluene with the rigid polymers PFO-BT and PFO to suspend isolated nanotubes. The specific nanotube species selected are also dependent on the solvent used and can be adjusted by the use of THF or xylene. Where the structure has more flexible conformations, the polymers are shown to be less selective but show an enhanced overall solubilization of nanotube material. When chloroform is used as the solvent, there is a large increase in the overall solubilization, but the nanotubes are suspended as bundles rather than as isolated tubes which leads to a quenching of their photoluminescence.
Disciplines :
Chemical engineering
Author, co-author :
Hwang, Jeong-Yuan; University of Oxford > Clarendon Laboratory
Nish, Adrian; University of Oxford > Clarendon Laboratory
Doig, James; University of Oxford > Clarendon Laboratory
Douven, Sigrid ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Chen, Chun-Wei; National Taiwan University
Chen, Li-Chyong; National Taiwan University
Nicholas, Robin J.; University of Oxford > Clarendon Laboratory
Language :
English
Title :
Polymer Structure and Solvent Effects on the Selective Dispersion of Single-Walled Carbon Nanotubes
Publication date :
2008
Journal title :
Journal of the American Chemical Society
ISSN :
0002-7863
eISSN :
1520-5126
Publisher :
American Chemical Society, United States - District of Columbia
Bethune, D. S.; Klang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605.
Niyogi, S.; Hamon, M. A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M. E.; Haddon, R. C. Acc. Chem. Res. 2002, 35, 1105.
Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Springer: Berlin, 2001.
Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Appl. Phys. Lett. 1992, 60, 2204.
Journet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; delaChapelle, M. L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E. Nature 1997, 388, 756.
Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Science 2002, 298, 2361.
Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. J. Am. Chem. Soc. 2003, 125, 11186.
Kukovecz, A.; Kramberger, C.; Georgakilas, V.; Prato, M.; Kuzmany, H. Eur. Phys. J. B 2002, 28, 223.
An, L.; Owens, J. M.; McNeil, L. E.; Liu, J. J. Am. Chem. Soc. 2002, 124, 13688.
Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y. S.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95.
Boul, P. J.; Liu, J.; Michelson, E. T.; Huffman, C. B.; Ericson, L. M.; Chiang, I. W.; Smith, K. A.; Colbert, D. T.; Hauge, R. H.; Margrave, J. L.; Smalley, R. E. Chem. Phys. Lett. 1999, 310, 367.
Zhao, B.; Hu, H.; Niyogi, S.; Itkis, M. E.; Hamon, M. A.; Bhowmik, P.; Meier, M. S.; Haddon, R. C. J. Am. Chem. Soc. 2001, 123, 11673.
O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297, 593.
Granstrom, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H. Nature 1998, 395, 257.
Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Tailiani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature 1999, 397, 121.
Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741.
Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F. J. Am. Chem. Soc. 2003, 125, 3370.
Maeda, Y. et. al. J. Am. Chem. Soc. 2005, 127, 10287.
Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. Nat. Mater. 2003, 2, 338.
Zheng, M.; Diner, B. A. J. Am. Chem. Soc. 2004, 126, 15490.
Rice, N. A.; Soper, K.; Zhou, N.; Merschrod, E.; Zhao, Y. Chem. Commun. 2006, 4937.
Wei, C. Nano Lett. 2006, 6, 1627.
Nish, A.; Hwang, J.-Y.; Doig, J.; Nicholas, R. J. Nat. Nanotechnol. 2007, 2, 640.
Nish, A.; Hwang, J.-Y.; Doig, J.; Nicholas, R. J. Nanotechnology 2008, 19, 095603.
Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Chem. Phys. Lett. 1999, 313, 91.
Weisman, R. B.; Bachilo, S. M Nano Lett. 2003, 3, 1235.
Ando, T. J. Phys. Soc. Jpn. 2004, 73, 3351.
Li, L.-J.; Lin, T.-W.; Doig, J.; Mortimer, I. B.; Wiltshire, J. G.; Taylor, R. A.; Sloan, J.; Green, M. L. H.; Nicholas, R. J. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 74, 245418.
Li, L. J.; Khlobystov, A. N.; Wiltshire, J. G.; Briggs, G. A. D.; Nicholas, R. J. Nat. Mater. 2005, 5, 481.
Jones, M.; Engtrakul, C.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. J.; Heben, M. J.; Rumbles, G. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 115426.
Miyauchi, Y.; Oba, M.; Maruyama, S. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 74, 205440.
Weisman, R. B.; Bachilo, S. M; Tsyboulski, D. Appl. Phys. A 2004, 78, 1111.
Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rev. Lett. 2001, 86, 1118.
Ponder, J. W.; Richards, F. M. J. Comput. Chem. 1987, 8, 1016.
Allinger, N. L.; Yuh, Y. H.; Lii, J. H. J. Am. Chem. Soc. 1989, 111, 8551.
Huser, T.; Yan, M.; Rothberg, L. J. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 11187.
Schwartz, B. J. Annu. Rev. Phys. Chem. 2003, 54, 141.