van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9, 112–124, 10.1038/nrm2330 (2008).
Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).
Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572, 10.1038/42408 (1997).
Lingwood, D., Kaiser, H. J., Levental, I. & Simons, K. Lipid rafts as functional heterogeneity in cell membranes. Biochem Soc Trans 37, 955–960, 10.1042/BST0370955 (2009).
Carquin, M., D’Auria, L., Pollet, H., Bongarzone, E. R. & Tyteca, D. Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains. Prog Lipid Res 62, 1–24, 10.1016/j.plipres.2015.12.004 (2016).
Mollinedo, F. & Gajate, C. Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul 57, 130–146, 10.1016/j.jbior.2014.10.003 (2015).
Lorent, J. H., Quetin-Leclercq, J. & Mingeot-Leclercq, M. P. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org Biomol Chem 12, 8803–8822, 10.1039/c4ob01652a (2014).
Lorent, J. et al. Domain formation and permeabilization induced by the saponin alpha-hederin and its aglycone hederagenin in a cholesterol-containing bilayer. Langmuir 30, 4556–4569, 10.1021/la4049902 (2014).
Lorent, J. H. et al. alpha-Hederin Induces Apoptosis, Membrane Permeabilization and Morphologic Changes in Two Cancer Cell Lines Through a Cholesterol-Dependent Mechanism. Planta Med 82, 1532–1539, 10.1055/s-0042-114780 (2016).
Korchowiec, B. et al. Impact of two different saponins on the organization of model lipid membranes. Biochim Biophys Acta 1848, 1963–1973, 10.1016/j.bbamem.2015.06.007 (2015).
Sudji, I. R., Subburaj, Y., Frenkel, N., Garcia-Saez, A. J. & Wink, M. Membrane Disintegration Caused by the Steroid Saponin Digitonin Is Related to the Presence of Cholesterol. Molecules 20, 20146–20160, 10.3390/molecules201119682 (2015).
Sucha, L. et al. The cytotoxic effect of alpha-tomatine in MCF-7 human adenocarcinoma breast cancer cells depends on its interaction with cholesterol in incubation media and does not involve apoptosis induction. Oncol Rep 30, 2593–2602, 10.3892/or.2013.2778 (2013).
Keukens, E. A. et al. Glycoalkaloids selectively permeabilize cholesterol containing biomembranes. Biochim Biophys Acta 1279, 243–250 (1996).
Bangham, A. D., Horne, R. W., Glauert, A. M., Dingle, J. T. & Lucy, J. A. Action of saponin on biological cell membranes. Nature 196, 952–955 (1962).
Nag, S. A. et al. Ginsenosides as Anticancer Agents: In vitro and in vivo Activities, Structure-Activity Relationships, and Molecular Mechanisms of Action. Front Pharmacol 3, 25, 10.3389/fphar.2012.00025 (2012).
Yi, J. S. et al. Ginsenoside Rh2 induces ligand-independent Fas activation via lipid raft disruption. Biochem Biophys Res Commun 385, 154–159, 10.1016/j.bbrc.2009.05.028 (2009).
Park, E. K. et al. Induction of apoptosis by the ginsenoside Rh2 by internalization of lipid rafts and caveolae and inactivation of Akt. Br J Pharmacol 160, 1212–1223, 10.1111/j.1476-5381.2010.00768.x (2010).
Verstraeten, S. L. et al. Membrane cholesterol delays cellular apoptosis induced by ginsenoside Rh2, a steroid saponin. Toxicol Appl Pharmacol 352, 59–67, 10.1016/j.taap.2018.05.014 (2018).
Ducarme, P., Rahman, M. & Brasseur, R. IMPALA: a simple restraint field to simulate the biological membrane in molecular structure studies. Proteins 30, 357–371 (1998).
Brasseur, R., Killian, J. A., De Kruijff, B. & Ruysschaert, J. M. Conformational analysis of gramicidin-gramicidin interactions at the air/water interface suggests that gramicidin aggregates into tube-like structures similar as found in the gramicidin-induced hexagonal HII phase. Biochim Biophys Acta 903, 11–17 (1987).
Bagatolli, L. A., Parasassi, T., Fidelio, G. D. & Gratton, E. A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties. Photochem Photobiol 70, 557–564 (1999).
Parasassi, T., De Stasio, G., d’Ubaldo, A. & Gratton, E. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J 57, 1179–1186, 10.1016/S0006-3495(90)82637-0 (1990).
Filippov, A., Oradd, G. & Lindblom, G. Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers. Biophys J 90, 2086–2092, 10.1529/biophysj.105.075150 (2006).
Jimenez-Rojo, N., Garcia-Arribas, A. B., Sot, J., Alonso, A. & Goni, F. M. Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: a glimpse into sphingolipid complexity. Biochim Biophys Acta 1838, 456–464, 10.1016/j.bbamem.2013.10.010 (2014).
do Canto, A. et al. Diphenylhexatriene membrane probes DPH and TMA-DPH: A comparative molecular dynamics simulation study. Biochim Biophys Acta 1858, 2647–2661, 10.1016/j.bbamem.2016.07.013 (2016).
Juhasz, J., Davis, J. H. & Sharom, F. J. Fluorescent probe partitioning in giant unilamellar vesicles of ‘lipid raft’ mixtures. Biochem J 430, 415–423, 10.1042/BJ20100516 (2010).
de Almeida, R. F., Fedorov, A. & Prieto, M. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 85, 2406–2416, 10.1016/S0006-3495(03)74664-5 (2003).
Goni, F. M. et al. Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochim Biophys Acta 1781, 665–684, 10.1016/j.bbalip.2008.09.002 (2008).
Drucker, P., Pejic, M., Galla, H. J. & Gerke, V. Lipid segregation and membrane budding induced by the peripheral membrane binding protein annexin A2. J Biol Chem 288, 24764–24776, 10.1074/jbc.M113.474023 (2013).
Augustin, J. M., Kuzina, V., Andersen, S. B. & Bak, S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72, 435–457, 10.1016/j.phytochem.2011.01.015 (2011).
Dos Santos, A. G. et al. Changes in membrane biophysical properties induced by the Budesonide/Hydroxypropyl-beta-cyclodextrin complex. Biochim Biophys Acta 1859, 1930–1940, 10.1016/j.bbamem.2017.06.010 (2017).
Lorent, J., Le Duff, C. S., Quetin-Leclercq, J. & Mingeot-Leclercq, M. P. Induction of highly curved structures in relation to membrane permeabilization and budding by the triterpenoid saponins, alpha- and delta-Hederin. J Biol Chem 288, 14000–14017, 10.1074/jbc.M112.407635 (2013).
Nakamura, T. et al. Interaction of saponins with red blood cells as well as with the phosphatidylcholine liposomal membranes. J. Pharmacobiodyn 2, 374–382, 10.1248/bpb1978.2.374 (1979).
Hu, M., Konoki, K. & Tachibana, K. Cholesterol-independent membrane disruption caused by triterpenoid saponins. Biochim Biophys Acta 1299, 252–258, 10.1016/0005-2760(95)00214-6 (1996).
Garcia-Saez, A. J., Chiantia, S. & Schwille, P. Effect of line tension on the lateral organization of lipid membranes. J Biol Chem 282, 33537–33544, 10.1074/jbc.M706162200 (2007).
Lin, F. & Wang, R. Hemolytic mechanism of dioscin proposed by molecular dynamics simulations. J Mol Model 16, 107–118, 10.1007/s00894-009-0523-0 (2010).
Bakrac, B. et al. Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J Biol Chem 283, 18665–18677, 10.1074/jbc.M708747200 (2008).
Bakrac, B. & Anderluh, G. Molecular mechanism of sphingomyelin-specific membrane binding and pore formation by actinoporins. Adv Exp Med Biol 677, 106–115 (2010).
Schon, P. et al. Equinatoxin II permeabilizing activity depends on the presence of sphingomyelin and lipid phase coexistence. Biophys J 95, 691–698, 10.1529/biophysj.108.129981 (2008).
Claereboudt, E. J. S., Eeckhaut, I., Lins, L. & Deleu, M. How different sterols contribute to saponin tolerant plasma membranes in sea cucumbers. Sci Rep 8, 10845, 10.1038/s41598-018-29223-x (2018).
Hope, M. J., Bally, M. B., Webb, G. & Cullis, P. R. Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta 812, 55–65 (1985).
Bartlett, G. R. Phosphorus assay in column chromatography. J Biol Chem 234, 466–468 (1959).
Razafindralambo, H., Dufour, S., Paquot, M. & Deleu, M. Thermodynamic studies of the binding interactions of surfactin analogues to lipid vesicles. J Therm Anal Calorim 95, 817–821, 10.1007/s10973-008-9403-6 (2009).
Harris, F. M., Best, K. B. & Bell, J. D. Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochim Biophys Acta 1565, 123–128 (2002).
Weinstein, J. N., Yoshikami, S., Henkart, P., Blumenthal, R. & Hagins, W. A. Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science 195, 489–492 (1977).
Hoekstra, D., de Boer, T., Klappe, K. & Wilschut, J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23, 5675–5681 (1984).
Rodriguez, N., Pincet, F. & Cribier, S. Giant vesicles formed by gentle hydration and electroformation: a comparison by fluorescence microscopy. Colloids Surf B Biointerfaces 42, 125–130, 10.1016/j.colsurfb.2005.01.010 (2005).