Carvunis, A.-R.; Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States, UJF-Grenoble 1/CNRS/TIMC-IMAG UMR 5525, Computational and Mathematical Biology Group, Grenoble F-38041, France
Rolland, T.; Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
Wapinski, I.; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, United States
Calderwood, M. A.; Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
Yildirim, M. A.; Center for International Development, Harvard University, Cambridge, MA 02138, United States
Simonis, N.; Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States, Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Campus Plaine, Free University of Brussels, 1050 Brussels, Wallonia-Brussels Federation, Belgium
CHARLOTEAUX, Benoit ; Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States, Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Wallonia-Brussels Federation, Belgium.
Hidalgo, C. A.; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
Barbette, J.; Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
Santhanam, B.; Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
Brar, G. A.; Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, United States
Weissman, J. S.; Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, United States
Regev, A.; Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States, Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
Thierry-Mieg, N.; UJF-Grenoble 1/CNRS/TIMC-IMAG UMR 5525, Computational and Mathematical Biology Group, Grenoble F-38041, France
Cusick, M. E.; Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
Vidal, M.; Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
BWF - Burroughs Wellcome Fund HHMI - Howard Hughes Medical Institute Damon Runyon Cancer Research Foundation ACS - American Cancer Society F.R.S.-FNRS - Fonds de la Recherche Scientifique NHGRI - National Human Genome Research Institute
Tautz, D. & Domazet-Loso, T. The evolutionary origin of orphan genes. Nature Rev. Genet. 12, 692-702 (2011).
Kaessmann, H. Origins, evolution, and phenotypic impact of new genes. Genome Res. 20, 1313-1326 (2010).
Jacob, F. Evolution and tinkering. Science 196, 1161-1166 (1977).
Siepel, A. Darwinian alchemy: human genes from noncoding DNA. Genome Res. 19, 1693-1695 (2009).
Khalturin, K., Hemmrich, G., Fraune, S., Augustin, R. & Bosch, T. C. More than just orphans: are taxonomically-restricted genesimportant in evolution? Trends Genet. 25, 404-413 (2009).
Wilson, B. A. & Masel, J. Putatively noncoding transcripts show extensive association with ribosomes. Genome Biol. Evol. 3, 1245-1252 (2011).
Jarosz, D. F., Taipale, M. & Lindquist, S. Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms. Annu. Rev. Genet. 44, 189-216 (2010).
Cai, J., Zhao, R., Jiang, H. & Wang, W. De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics 179, 487-496 (2008).
Wu, D. D., Irwin, D. M. & Zhang, Y. P. De novo origin of human protein-coding genes. PLoS Genet. 7, e1002379 (2011).
Ekman, D. & Elofsson, A. Identifying and quantifying orphan protein sequences in fungi. J. Mol. Biol. 396, 396-405 (2010).
Lipman, D. J., Souvorov, A., Koonin, E. V., Panchenko, A. R. & Tatusova, T. A. The relationship of protein conservation and sequence length. BMC Evol. Biol. 2, 20 (2002).
Wolf, Y. I., Novichkov, P. S., Karev, G. P., Koonin, E. V. & Lipman, D. J. The universal distributionof evolutionary rates of genes anddistinct characteristics of eukaryotic genes of different apparent ages. Proc. Natl Acad. Sci. USA 106, 7273-7280 (2009).
Cai, J. J. & Petrov, D. A. Relaxed purifying selection and possibly high rate of adaptation in primate lineage-specific genes. Genome Biol. Evol. 2, 393-409 (2010).
Zheng, D. & Gerstein, M. B. The ambiguous boundary between genes and pseudogenes: the dead rise up, or do they? Trends Genet. 23, 219-224 (2007).
Oliver, S. G. et al. The complete DNA sequence of yeast chromosome III. Nature 357, 38-46 (1992).
Fisk, D. G. et al. Saccharomyces cerevisiae S288C genome annotation: a working hypothesis. Yeast 23, 857-865 (2006).
Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344-1349 (2008).
Boyer, J. et al. Large-scale exploration of growth inhibition caused by overexpressionofgenomic fragments in Saccharomyces cerevisiae.GenomeBiol. 5, R72 (2004).
Brar, G. A. et al. High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335, 552-557 (2012).
Li, Q. R. et al. Revisiting the Saccharomyces cerevisiae predictedORFeome. Genome Res. 18, 1294-1303 (2008).
Jansen, R. & Gerstein, M. Analysis of the yeast transcriptome with structural and functional categories: characterizing highly expressed proteins. Nucleic Acids Res. 28, 1481-1488 (2000).
Giacomelli, M. G., Hancock, A. S. & Masel, J. The conversion of 39 UTRs into coding regions. Mol. Biol. Evol. 24, 457-464 (2007).
Prat, Y., Fromer, M., Linial, N. & Linial, M. Codon usage is associated with the evolutionary age of genes in metazoan genomes. BMC Evol. Biol. 9, 285 (2009).
Yomtovian, I., Teerakulkittipong, N., Lee, B., Moult, J. & Unger, R. Composition bias and the origin of ORFan genes. Bioinformatics 26, 996-999 (2010).
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218-223 (2009).
Vishnoi, A., Kryazhimskiy, S., Bazykin, G. A., Hannenhalli, S. & Plotkin, J. B. Young proteins experience more variable selection pressures than old proteins. Genome Res. 20, 1574-1581 (2010).
Gao, L. Z. & Innan, H. Very low gene duplication rate in the yeast genome. Science 306, 1367-1370 (2004).
Hayden, E. J., Ferrada, E. & Wagner, A. Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme. Nature 474, 92-95 (2011).
Pal, C., Papp, B. & Hurst, L. D. Highly expressed genes in yeast evolve slowly. Genetics 158, 927-931 (2001).
Drummond, D. A., Raval, A. & Wilke, C. O. A single determinant dominates the rate of yeast protein evolution. Mol. Biol. Evol. 23, 327-337 (2006).