STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Sinclair, J. A.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
Orton, G. S.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
Fernandes, J.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States, Department of Physics and Astronomy, California State University, Long Beach, CA, United States
Kasaba, Y.; Planetary Plasma and Atmospheric Research Center, Tohoku University, Sendai, Japan
Sato, T. M.; Space Information Center, Hokkaido Information University, Ebetsu, Japan
Fujiyoshi, T.; Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI, United States
Tao, C.; National Institute of Information and Communications Technology, Tokyo, Japan
Vogt, M. F.; Center for Space Physics, Boston University, Boston, MA, United States
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Moses, J. I.; Space Science Institute, Boulder, CO, United States
Greathouse, T. K.; Southwest Research Institute, San Antonio, TX, United States
Dunn, W.; Department of Space and Climate Physics, University College London, London, United Kingdom
Giles, R. S.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
Tabataba-Vakili, F.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
Fletcher, L. N.; Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
Irwin, P. G. J.; Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
Caldwell, J., Gillett, F. C. & Tokunaga, A. T. Possible infrared aurorae on Jupiter. Icarus 44, 667–675 (1980).
Kim, S. J., Caldwell, J., Rivolo, A. R., Wagener, R. & Orton, G. S. Infrared polar brightening on Jupiter. III. Spectrometry from the Voyager 1 IRIS experiment. Icarus 64, 233–248 (1985).
Flasar, F. M. et al. An intense stratospheric jet on Jupiter. Nature 427, 132–135 (2004).
Grodent, D., Gérard, J.-C., Clarke, J. T., Gladstone, G. R. & Waite, J. H. A possible auroral signature of a magnetotail reconnection process on Jupiter. J. Geophys. Res. Space 109, A05201 (2004).
Nichols, J. D. et al. Response of Jupiter’s auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophys. Res. Lett. 44, 7643–7652 (2017).
Dunn, W. R. et al. The independent pulsations of Jupiter’s northern and southern X-ray auroras. Nat. Astron. 1, 758–764 (2017).
Sinclair, J. A. et al. Independent evolution of stratospheric temperatures in Jupiter’s northern and southern auroral regions from 2014 to 2016. Geophys. Res. Lett. 44, 5345–5354 (2017).
Bonfond, B. et al. The tails of the satellite auroral footprints at Jupiter. J. Geophys. Res. Space 122, 7985–7996 (2017).
Joy, S. P. et al. Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. Space 107, 1309 (2002).
Grodent, D. et al. Jupiter’s aurora observed with HST during Juno orbits 3 to 7. J. Geophys. Res. Space 123, 3299–3319 (2018).
Drossart, P. et al. Thermal profiles in the auroral regions of Jupiter. J. Geophys. Res. 98, 18803 (1993).
Kita, H. et al. Characteristics of solar wind control on Jovian UV auroral activity deciphered by long-term Hisaki EXCEED observations: evidence of preconditioning of the magnetosphere? Geophys. Res. Lett. 43, 6790–6798 (2016).
Kostiuk, T. et al. Variability of mid-infrared Aurora on Jupiter: 1979 to 2016. In American Geophysical Union Fall Meeting 2016 P33C-2155 (AGU, 2016).
Zhang, X. et al. Radiative forcing of the stratosphere of Jupiter, part I: atmospheric cooling rates from Voyager to Cassini. Planet. Space Sci. 88, 3–25 (2013).
Seiff, A. et al. Thermal structure of Jupiter’s atmosphere near the edge of a 5-μm hot spot in the north equatorial belt. J. Geophys. Res. 103, 22857–22890 (1998).
Bougher, S. W., Waite, J. H., Majeed, T. & Gladstone, G. R. Jupiter thermospheric general circulation model (JTGCM): global structure and dynamics driven by auroral and Joule heating. J. Geophys. Res. Planets 110, E04008 (2005).
Gérard, J.-C. et al. Altitude of Saturn’s aurora and its implications for the characteristic energy of precipitated electrons. Geophys. Res. Lett. 36, L02202 (2009).
Yates, J., Achilleos, N. & Guio, P. Response of the jovian thermosphere to a transient ‘pulse’ in solar wind pressure. Planet. Space Sci. 91, 27–44 (2014).
Moses, J. I. et al. Photochemistry and diffusion in Jupiter’s stratosphere: constraints from ISO observations and comparisons with other giant planets. J. Geophys. Res. Planets 110, E08001 (2005).
Clark, G. et al. Precipitating electron energy flux and characteristic energies in Jupiter’s main auroral region as measured by juno/jedi. J. Geophys. Res. Space 123, 7554–7567 (2018).
Appleby, J. F. CH4 nonlocal thermodynamic equilibrium in the atmospheres of the giant planets. Icarus 85, 355–379 (1990).
Kim, S. J. Infrared processes in the Jovian auroral zone. Icarus 75, 399–408 (1988).
López-Puertas, M. & Taylor, F. Non-LTE Radiative Transfer in the Atmosphere (World Scientific, 2001).
Sinclair, J. A. et al. Jupiter’s auroral-related stratospheric heating and chemistry I: analysis of Voyager-IRIS and Cassini-CIRS spectra. Icarus 292, 182–207 (2017).
Sinclair, J. A. et al. Jupiter’s auroral-related stratospheric heating and chemistry II: analysis of IRTF-TEXES spectra measured in December 2014. Icarus 300, 305–326 (2018).
Halthore, R. N., Allen, J. E. Jr & Decola, P. L. A non-LTE model for the Jovian methane infrared emissions at high spectral resolution. Astrophys. J. Lett. 424, L61–L64 (1994).
Kostiuk, T., Romani, P., Espenak, F. & Livengood, T. A. Temperature and abundances in the Jovian auroral stratosphere. 2: ethylene as a probe of the microbar region. J. Geophys. Res. 98, 18823 (1993).
Livengood, T. A., Kostiuk, T. & Espenak, F. Temperature and abundances in the Jovian auroral stratosphere. 1: ethane as a probe of the millibar region. J. Geophys. Res. 98, 18813 (1993).
Nichols, J. D. & Milan, S. E. Stellar wind-magnetosphere interaction at exoplanets: computations of auroral radio powers. Mon. Not. R. Astron. Soc. 461, 2353–2366 (2016).
Cohen, O., Kashyap, V. L., Drake, J. J., Sokolov, I. V. & Gombosi, T. I. The dynamics of stellar coronae harboring hot Jupiters. II. A space weather event on a hot Jupiter. Astrophys. J. 738, 166 (2011).
Kataza, H. et al. COMICS: the cooled mid-infrared camera and spectrometer for the Subaru telescope. Proc. SPIE 4008, 1144–1152 (2000).
Okamoto, Y. K. et al. Improved performances and capabilities of the cooled mid-infrared camera and spectrometer (COMICS) for the Subaru telescope. Proc. SPIE 4841, 169–180 (2003).
Flasar, F. M. et al. Exploring the Saturn system in the thermal infrared: the composite infrared spectrometer. Space Sci. Rev. 115, 169–297 (2004).
Fletcher, L. N. et al. Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging. Icarus 200, 154–175 (2009).
Parrish, P. D. et al. Saturn’s atmospheric structure: the intercomparison of Cassini/CIRS-derived temperatures with ground-based determinations. Bull. Am. Astron. Soc. 37, 680 (2005).
Vogt, M. F. et al. Improved mapping of Jupiter’s auroral features to magnetospheric sources. J. Geophys. Res. Space 116, A03220 (2011).
Vogt, M. F. et al. Magnetosphere-ionosphere mapping at Jupiter: quantifying the effects of using different internal field models. J. Geophys. Res. Space 120, 2584–2599 (2015).
Hess, S. L. G., Bonfond, B., Zarka, P. & Grodent, D. Model of the Jovian magnetic field topology constrained by the Io auroral emissions. J. Geophys. Res. Space 116, A05217 (2011).
Tao, C., Kataoka, R., Fukunishi, H., Takahashi, Y. & Yokoyama, T. Magnetic field variations in the jovian magnetotail induced by solar wind dynamic pressure enhancements. J. Geophys. Res. Space 110, A11208 (2005).
Badman, S. V. et al. Weakening of Jupiter’s main auroral emission during January 2014. Geophys. Res. Lett. 43, 988–997 (2016).
Kinrade, J. et al. An isolated, bright cusp aurora at Saturn. J. Geophys. Res. Space 122, 6121–6138 (2017).
Lamy, L. et al. The aurorae of Uranus past equinox. J. Geophys. Res. Space 122, 3997–4008 (2017).
Thatcher, L. J. & Müller, H.-R. Statistical investigation of hourly OMNI solar wind data. J. Geophys. Res. Space 116, A12107 (2011).
Zieger, B. & Hansen, K. C. Statistical validation of a solar wind propagation model from 1 to 10 AU. J. Geophys. Res. Space 113, A08107 (2008).
Irwin, P. G. J. et al. The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J. Quant. Spectrosc. Rad. Transfer 109, 1136–1150 (2008).
Fletcher, L. N. et al. The origin and evolution of Saturn’s 2011–2012 stratospheric vortex. Icarus 221, 560–586 (2012).