Identification of barley (hordeum vulgare L. SubSp. Vulgare) root exudates allelochemicals, their autoallelopathic activity and against bromus diandrus Roth. Germination
[en] Crops with weed suppressive root exudates or the direct use of bioherbicidal allelochemicals
is a new approach in integrated weed management systems. In this context, the allelopathic activity and chemical composition of root exudates from six genotypes (modern varieties and landraces) of barley were characterized. The phenolic acids appeared to be particularly implicated in the inhibitory action of barley root exudates against Bromus diandrus. The amount of these compounds was higher in sandy substrate than in sandy-clay-loam substrate. Ten phenolic acids and one phenylpropanoid derivative were present, in addition to saponarin, a newly identified flavonoid in barley root exudates. Seven compounds explaining variability in the inhibitory activity of barley roots (stepwise analysis) and one compound detected only in highly allelopathic genotypes were toxic against receiver plants. Most compounds had a greater inhibitory effect on the growth of great brome than the barley genotypes. The synergistic and/or additive effect of the eight compounds appeared to be the source of the toxicity. Benzoic acid, the mixture of compounds, saponarin and salicylic acid were the most
effcient compounds against the great brome and the less aggressive against barley. Overall, the results revealed the allelopathic potential of the water-soluble compounds exuded by the roots of living barley plants. These compounds included saponarin, a flavonoid not yet recognized as a barley root allelochemical.
du Jardin, Patrick ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions végétales et valorisation
Language :
English
Title :
Identification of barley (hordeum vulgare L. SubSp. Vulgare) root exudates allelochemicals, their autoallelopathic activity and against bromus diandrus Roth. Germination
Bais, H.P.; Park, S.W.; Weir, T.L.; Callaway, R.M.; Vivanco, J.M. How plants communicate using the underground information superhighway. Trends Plant Sci. 2004, 9, 26–32. [CrossRef] [PubMed]
Danner, H.; Brown, P.; Cator, E.A.; Harren, F.J.; van Dam, N.M.; Cristescu, S.M. Aboveground and belowground herbivores synergistically induce volatile organic sulfur compound emissions from shoots but not from roots. J. Chem. Ecol. 2015, 41, 631–640. [CrossRef] [PubMed]
Elijarrat, E.; Barcelo, D. Sample handling and analysis of allelochemical compounds in plants. Trends Anal. Chem. 2001, 20, 584–590. [CrossRef]
Rice, E.L. Allelopathy, 2nd ed.; Academic Press: Orlando, FL, USA, 1984; p. 422.
Chon, S.U.; Jennings, J.A.; Nelson, C.J. Alfalfa (Medicago sativa L.) autotoxicity: Current status. Allelopath. J. 2006, 18, 57–80.
Pedrol, N.; González, L.; Reigosa, M.J. Allelopathy and abiotic stress. In Proceedings of Allelopathy: A Physiological Process with Ecological Implications; Reigosa, M.J., Pedrol, N., González, L., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 171–209.
Souissi, T.; Belhadjsalah, H.; Latiri, K. Brome in cereal crops: Infestations and management. L’Investisseur Agricole 2001, 42, 29–32.
Souissi, T.; Belhadjsalah, H.; Mhafdhi, M.; Latiri, K. Non chemical control of Bromus diandrus Roth. in wheat in Tunisia. In Proceedings of the XI International Conference on Weed Biology; Association Française de Protection des Plantes: Dijon, France, 2000; pp. 417–424.
Mejri, D.; Gamalero, E.; Tombolini, R.; Musso, C.; Massa, N.; Berta, G.; Souissi, T. Biological control of great brome (Bromus diandrus) in durum wheat (Triticum durum): Specificity, physiological traits and impact on plant growth and root architecture of the fluorescent pseudomonad strain X33d. Biocontrol 2010, 55, 561–572. [CrossRef]
Mejri, D.; Gamalero, E.; Souissi, T. Formulation development of the deleterious rhizobacterium Pseudomonas trivialis X33d for biocontrol of brome (Bromus diandrus) in durum wheat. J. Appl. Microbiol. 2013, 114, 219–228. [CrossRef] [PubMed]
Bertholdsson, N.O. Early vigour and allelopathy–two useful traits for enhanced barley and wheat competitiveness against weeds. Weed. Res. 2005, 45, 94–102. [CrossRef]
Christensen, S. Weed suppression ability of spring barley varieties. Weed Res. 1995, 35, 241–247. [CrossRef]
Dhima, K.; Vasilakoglou, I.; Gatsis, T.; Eleftherohorinos, I. Competitive interactions of fifty barley cultivars with Avena sterilis and Asperugo procumbens. Field Crops Res. 2010, 117, 90–100. [CrossRef]
Bertholdsson, N.O. Variation in allelopathic activity over 100 years of barley selection and breeding. Weed Res. 2004, 44, 78–86. [CrossRef]
Bouhaouel, I.; Gfeller, A.; Fauconnier, M.L.; Slim Amara, H.; du Jardin, P. Allelopathic and autotoxicity effects of barley (Hordeum vulgare L. ssp. vulgare) root exudates. Biocontrol 2015, 60, 425–436. [CrossRef]
Ninkovic, V. Volatile communication between barley plants affects biomass allocation. J. Exp. Bot. 2003, 54, 1931–1939. [CrossRef] [PubMed]
Salas, M.L.; Corcuera, L.J. Effect of environment on gramine content in barley leaves and susceptibility to the aphid Schizaphis graminum. Phytochemistry 1991, 30, 3237–3240. [CrossRef]
Glinwood, R.; Ninkovic, V.; Pettersson, J.; Ahmed, E. Barley exposed to aerial allelopathy from thistles (Cirsium spp.) becomes less acceptable to aphids. Ecol. Entomol. 2004, 29, 188–195. [CrossRef]
Lanoue, A.; Burlat, V.; Henkes, G.J.; Koch, I.; Schurr, U.; Röse, U.S.R. De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol. 2010, 185, 577–588. [CrossRef] [PubMed]
Kremer, R.; Ben-Hammouda, M. Allelopathic Plants. 19. Barley (Hordeum vulgare L). Allelopath. J. 2009, 24, 225–242.
Liu, D.L.; Lovett, J.V. Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. J. Chem. Ecol. 1993, 19, 2231–2244. [CrossRef]
Baghestani, A.; Lemieux, C.; Leroux, G.D.; Baziramakenga, R. Determination of allelochemicals in spring cereal cultivars of different competitiveness. Weed Sci. 1999, 47, 498–504. [CrossRef]
Hoult, A.H.C.; Lovett, J.V. Biologically active secondary metabolites of barley. III. A method for identification and quantification of hordenine and gramine in barley by high-performance liquid chromatography. J. Chem. Ecol. 1993, 19, 2245–2254. [CrossRef]
Lovett, J.V.; Hoult, A.H.C.; Christen, O. Biologically active secondary metabolites of barley. IV. Hordenine production by different barley lines. J. Chem. Ecol. 1994, 20, 1945–1954. [CrossRef] [PubMed]
El Gharbi, M.S.; El Felah, M. Les céréales en Tunisie: Plus d’un siècle de recherche variétale. Ann. L’INRAT 2013, 86, 45–68.
Wu, H.; Pratley, J.; Lemerle, D.; An, M.; Liu, D.L. Autotoxicity of wheat (Triticum aestivum L.) as determined by laboratory bioassays. Plant Soil 2007, 296, 85–93. [CrossRef]
Inderjit. Soil microorganisms: An important determinant of allelopathic activity. Plant Soil 2005, 274, 227–236. [CrossRef]
Ben-Hammouda, M.; Ghorbal, H.; Kremer, R.J.; Oueslati, O. Autotoxicity of barley. J. Plant Nutr. 2002, 25, 1155–1161. [CrossRef]
Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica I. The quantitative analysis of constituents. J. Sci. Food Agric. 1959, 10, 63–68. [CrossRef]
Zhang, F.J.; Guo, J.Y.; Liu, W.X.; Wan, F.H. Influence of coastal plain yellowtops (Flaveria bidentis) residues on growth of cotton seedlings and soil fertility. Arch. Agron. Soil Sci. 2012, 58, 1117–1128. [CrossRef]
Banwart, W.L.; Porter, P.M.; Granato, T.C.; Hassett, J.J. HPLC separation and wavelength area ratios of more than 50 phenolic acids and flavonoids. J. Chem. Ecol. 1985, 11, 383–395. [CrossRef]
Robbins, J.R.; Bean, S.R. Development of a quantitative high performance liquid chromatography-photodiode array detection measurement system for phenolic acids. J. Chromatogr. A 2004, 1038, 97–105. [CrossRef]
Bouhaouel, I.; Gfeller, A.; Fauconnier, M.L.; Delory, B.; Slim Amara, H.; du Jardin, P. Evaluation of the allelopathic potential of water-soluble compounds of barley (Hordeum vulgare L. subsp. vulgare) and great brome (Bromus diandrus Roth.) using a modified bioassay. Biotechnol. Agron. Soc. Environ. 2016, 20, 482–494.
Batish, D.R.; Kaur, S.; Singh, H.P.; Kohli, R.K. Role of root-mediated interactions in phytotoxic interference of Ageratum conyzoides with rice (Oryza sativa). Flora 2009, 204, 388–395. [CrossRef]
Chung, I.M.; Ahn, J.K.; Yun, S.J. Identification of allelopathic compounds from rice (Oryza sativa L.) straw and their biological activity. Can. J. Plant Sci. 2001, 81, 815–819. [CrossRef]
Jose, S.; Gillespie, A.R. Allelopathy in black walnut (Juglans nigra L.) alley cropping. II. Effects of juglone on hydroponically grown corn (Zea mays L.) and soybean (Glycine max L. Merr.) growth and physiology. Plant Soil 1998, 203, 199–206. [CrossRef]
Neumann, G.; Römheld, V. The release of root exudates as affected by the plant’s physiological status. In The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface; Pinton, R., Varanini, Z., Nannipieri, P., Eds.; Marcel Dekker: New York, NY, USA, 2001; pp. 41–93.
Batchu, A.K.; Zimmermann, D.; Schulze-Lefert, P.; Koprek, T. Correlation between hordatine accumulation, environmental factors and genetic diversity in wild barley (Hordeum spontaneum C. Koch) accessions from the Near East Fertile Crescent. Genetica 2006, 127, 87–99. [CrossRef]
Cecchi, A.M.; Koskinen, W.C.; Cheng, H.H.; Haider, K. Sorption–desorption of phenolic acids as affected by soil properties. Biol. Fert. Soils 2004, 39, 235–242. [CrossRef]
Bhowmik, P.C. Sorption of benzoic acid onto soil colloids and its implications for allelopathy studies. Biol. Fert. Soils 2004, 40, 345–348.
Bajpai, D.; Rajeswari, M.S. Interaction of 8-hydroxyquinoline with soil environment mediates its ecological function. PLoS ONE 2010, 5, 1–7.
Tharayil, N.; Bhowmik, P.C.; Xing, B. Preferential sorption of phenolic phytotoxins to soil: Implications for altering the availability of allelochemicals. J. Agric. Food Chem. 2006, 54, 3033–3040. [CrossRef]
Oueslati, O.; Ben-Hammouda, M.; Ghorbal, M.H.; El Gazzeh, M.; Kremer, R.J. Role of phenolic acids in expression of barley (Hordeum vulgare) autotoxicity. Allelopath. J. 2009, 23, 157–166.
Haoa, M.; Beta, T. Qualitative and quantitative analysis of the major phenolic compounds as antioxidants in barley and flaxseed hulls using HPLC/MS/MS. J. Sci. Food Agric. 2012, 92, 2062–2068. [CrossRef]
Chon, S.U.; Kim, Y.M. Herbicidal potential and quantification of suspected allelochemicals from four grass crop extracts. J. Agron. Crop Sci. 2004, 190, 145–150. [CrossRef]
Ferreres, F.; Andrade, P.B.; Valentão, P.; Gil-Izquierdo, A. Further knowledge on barley (Hordeum vulgare L.) leaves O-glycosyl-C-glycosyl flavones by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. J. Chromatogr. A 2008, 1182, 56–64. [CrossRef] [PubMed]
Marinova, K.; Kleinschmidt, K.; Weissenböck, G.; Klein, M. Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport. Plant Physiol. 2007, 144, 432–444. [CrossRef] [PubMed]
Seikel, M.K.; Geissman, T.A. The flavonoid constituents of barley (Hordeum vulgare): I. Saponarin. Arch. Biochem. Biophys. 1957, 71, 17–30. [CrossRef]
Blume, D.E.; McClure, J.W. C-glycosylflavone accumulation in Sandoz 6706-treated barley seedlings is a photocontrolled response. Phytochemistry 1978, 17, 1549–1551. [CrossRef]
Keasling, A.W.; Otter, R.R.; Bailey, F.C. Phytotoxicity of Passiflora incarnate extracts on germination and growth of Hordeum vulgare and Raphanus sativus. Allelopath. J. 2013, 31, 319–332.
Keyhanian, S.; Stahl-Biskup, E. Phenolic constituents in dried flowers of Aloe vera (Aloe barbadensis) and their in vitro antioxidative capacity. Planta Med. 2007, 73, 599–602. [CrossRef]
Basile, A.; Sorbo, S.; López-Sáez, J.A.; Cobianchi, R.C. Effects of seven pure flavonoids from mosses on germination and growth of Tortula muralis HEDW. (Bryophyta) and Raphanus sativus L. (Magnoliophyta). Phytochemistry 2003, 62, 1145–1151. [CrossRef]
Ohkawa, M. Three new anti-oxidative saponarin analogs from young green barley leaves. Chem. Pharm. Bull. 1998, 46, 1887–1890. [CrossRef]
Simeonova, R.; Vitcheva, V.; Kondeva-Burdina, M.; Krasteva, I.; Manov, V.; Mitcheva, M. Hepatoprotective and antioxidant effects of saponarin, isolated from Gypsophila trichotoma Wend. on paracetamol-induced liver damage in rats. BioMed Res. Int. 2013. [CrossRef] [PubMed]
Sengupta, S.; Mukherjee, A.; Goswami, R.; Basu, S. Hypoglycemic activity of the antioxidant saponarin, characterized as α-glucosidase inhibitor present in Tinospora cordifolia. J. Enzyme Inhib. Med. Chem. 2009, 24, 684–690. [CrossRef] [PubMed]
Vitcheva, V.; Simeonova, R.; Krasteva, I.; Yotova, M.; Nikolov, S.; Mitcheva, M. Hepatoprotective effects of saponarin, isolated from Gypsophila trichotoma Wend. on cocaine-induced oxidative stress in rats. Redox Rep. 2011, 16, 56–61. [CrossRef] [PubMed]
Seo, K.H.; Park, M.J.; Ra, J.E.; Han, S.I.; Nam, M.H.; Kim, J.H.; Lee, J.H.; Seo, W.D. Saponarin from barley sprouts inhibits NF-κB and MAPK on LPS-induced RAW 264.7 cells. Food Funct. 2014, 5, 3005–3013. [CrossRef] [PubMed]
Basile, A.; Giordano, S.; López-Sáez, J.A.; Cobianchi, R.C. Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry 1999, 52, 1479–1482. [CrossRef]
Reuber, S.; Bornman, J.F.; Weissenböck, G. A flavonoid mutant of barley (Hordeum vulgare L.) exhibits increased sensitivity to UV-B radiation in the primary leaf. Plant Cell Environ. 1996, 19, 593–601. [CrossRef]
Podstolski, A.; Sznajder, J.; Wichowska, G. Accumulation of phenolics and growth rate of barley seedlings (Hordeum vulgare L.). Biol. Plant PRAHA 1981, 23, 120–127. [CrossRef]
Christen, O.; Lovett, J.V. Effects of a short-term p-hydroxybenzoic acid application on grain yield and yield components in different tiller categories of spring barley. Plant Soil 1993, 151, 279–286. [CrossRef]
Ray, H.; Hastings, P.J. Variation within flax (Linum usitatissimum) and barley (Hordeum vulgare) in response to allelopathic chemicals. Theor. Appl. Genet. 1992, 84, 460–465. [CrossRef]
Ruan, X.; Li, Z.H.; Wang, Q.; Pan, C.D.; Jiang, D.A.; Wang, G.G. Autotoxicity and allelopathy of 3,4-dihydroxyacetophenone isolated from Picea schrenkiana needles. Molecules 2011, 16, 8874–8893. [CrossRef]
Dieterman, L.J.; Lin, C.Y.; Rohrbaugh, L.; Thiesfeld, V.; Wender, S.H. Identification and quantitative determination of scopolin and scopoletin in tobacco plants treated with 2,4-dichlorophenoxyacetic acid. Anal. Biochem. 1964, 9, 139–145. [CrossRef]
Fay, P.K.; Duke, W.B. An assessment of allelopathic potential in Avena germplasm. Weed Sci. 1977, 25, 224–228. [CrossRef]
Zobel, A.M.; Bialonska, D.; Silva, C.; Nighswander, J.E. Allelopathic role of phenolic compounds extruded by Medicago sativa L. leaves in response to bacterial or viral infections. Allelopath. J. 2005, 16, 131–136.
Peterson, J.K.; Harisson, H.F.; Jacksson, D.M. Biological activities and contents of scopolin and scopoletin in sweetpotato clones. HortScience 2003, 38, 1129–1133. [CrossRef]
Fernández-Aparicio, M.; Cimmino, A.; Evidente, A.; Rubiales, D. Inhibition of Orobanche crenata seed germination and radicle growth by allelochemicals identified in cereals. J. Agric. Food Chem. 2013, 61, 9797–9803. [CrossRef] [PubMed]
Qiu, L.; Wang, H.B.; Xiong, J.; Fang, C.X.; Wu, W.X.; He, H.B.; Lin, W.X. Regulation effect of exogenous salicylic acid on weed suppression and molecular physiological characteristics of allelopathic rice. Chin. J. Appl. Ecol. 2008, 19, 330–336.
Glass, A.D.M. Inhibition of phosphate uptake in barley roots by hydroxy-benzoic acids. Phytochemistry 1975, 14, 2127–2130. [CrossRef]
Kaur, H.; Kaushik, S. Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth. Plant Physiol. Biochem. 2005, 43, 77–81. [CrossRef]
US EPA. Office for Pesticides Programs Reregistration Eligibility Decision for Dicamba and Associated Salts. 2006. Available online: https://archive.epa.gov/pesticides/reregistration/web/pdf/dicamba_red.pdf (accessed on 13 December 2018).
Lodhi, M.A.K. Allelopathic effects of hackberry in a bottomland forest community. J. Chem. Ecol. 1975, 1, 171–182. [CrossRef]
Stupnicka-Rodzynkiewicz, E.; Dabkowska, T.; Stoklosa, A.; Hura, T.; Dubert, F.; Lepiarczyk, A. The effect of selected phenolic compounds on the initial growth of four weed species. J. Plant Dis. Protect. 2006, 20, 479–486.
Hura, T.; Dubert, F.; Dabkowska, T.; Stupnicka-Rodzynkiewicz, E.; Stoklosa, A.; Lepiarczyk, A. Quantitative analysis of phenolics in selected crop species and biological activity of these compounds evaluated by sensitivity of Echinochloa crus-galli. Acta Physiol. Plant. 2006, 28, 537–545. [CrossRef]
He, H.; Shen, L.; Song, B.; Guo, Y.; Liang, Y.; Liang, K.; Lin, W. Interactive effects between allelochemical substitutes. Chin. J. Appl. Ecol. 2005, 16, 890–894.
Delory, B.M.; Delaplace, P.; Fauconnier, M.L.; du Jardin, P. Root-emitted volatile organic compounds: Can they mediate belowground plant-plant interactions? Plant Soil 2016, 402, 1–26. [CrossRef]