Titania; photocatalysis; metallic modification; Evonik P25; Sol-gel process
Abstract :
[en] In this work, TiO2 nanoparticles were modified with different Cu and Pt species: metallic nanoparticles and ions. The photocatalysts were prepared via a sol-gel process by peptization with HNO3 at low temperature (i.e. < 100°C). The metallic nanoparticles were prepared by NaBH4 reduction from the corresponding metallic salts. For the ion modification, metallic salts were just added during the synthesis of the TiO2. The materials were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, diffuse reflectance, and X-ray photoelectron spectroscopy (XPS). The results showed that the TiO2 materials were mainly composed of anatase phase with a small amount of brookite phase. The nanoparticle size was in the range of 4-8 nm leading to high specific surface area (i.e. > 200 m2 g-1). The absorption property of these materials showed a visible sensitization for all samples even the pure TiO2 compared to the Evonik P25 due to N-doping confirmed by XPS analysis.
The photocatalytic activity on the degradation of p-nitrophenol (PNP) showed an increase in the efficiency for nearly all catalysts compared to the pure one. Some mechanisms were proposed to explain these modifications of activity with doping. Under visible light, the photocatalysts were up to 5 times more efficient than P25 (for the best sample composed of Cu metallic nanoparticles).
Disciplines :
Chemical engineering Materials science & engineering
Author, co-author :
Mahy, Julien ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Tilkin, Rémi ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Douven, Sigrid ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Lambert, Stéphanie ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Language :
English
Title :
TiO2 nanocrystallites photocatalysts modified with metallic species: Comparison between Cu and Pt doping
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., Environmental applications of semiconductor photocatalysis. Chem. Rev. 95 (1995), 69–96, 10.1021/cr00033a004.
Belet, A., Wolfs, C., Mahy, J.G., Poelman, D., Vreuls, C., Sol-gel syntheses of photocatalysts for the removal of pharmaceutical products in water. Nanomaterials 9 (2019), 1–14, 10.3390/nano9010126.
Reinosa, J.J., Leret, P., Álvarez-docio, C.M., del Campo, A., Fernández, J.F., Enhancement of UV absorption behavior in ZnO–TiO2 composites. Bol. Soc. Esp. Ceram. Vidr. 5 (2016), 55–62, 10.1016/j.bsecv.2016.01.004.
Carp, O., Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32 (2004), 33–177, 10.1016/j.progsolidstchem.2004.08.001.
Mahy, J.G., Cerfontaine, V., Poelman, D., Devred, F., Gaigneaux, E.M., Heinrichs, B., et al. Highly efficient low-temperature N-doped TiO2 catalysts for visible light photocatalytic applications. Materials, 11, 2018, 10.3390/ma11040584.
Tian, Q., Wei, W., Dai, J., Sun, Q., Zhuang, J., Zheng, Y., et al. Porous core-shell TixSn1-xO2 solid solutions with broad-light response: one-pot synthesis and ultrahigh photooxidation performance. Appl. Catal. B Environ. 244 (2019), 45–55, 10.1016/j.apcatb.2018.11.045.
Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125 (2012), 331–349, 10.1016/j.apcatb.2012.05.036.
Léonard, G.L.-M., Pàez, C.A., Ramírez, A.E., Mahy, J.G., Heinrichs, B., Interactions between Zn2+ or ZnO with TiO2 to produce an efficient photocatalytic, superhydrophilic and aesthetic glass. J. Photochem. Photobiol. A Chem., 350, 2018, 10.1016/j.jphotochem.2017.09.036.
Kasinathan, K., Kennedy, J., Elayaperumal, M., Henini, M., Malik, M., Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Sci. Rep., 6, 2016, 38064, 10.1038/srep38064.
Mahy, J.G., Lambert, S.D., Tilkin, R.G., Poelman, D., Wolfs, C., Devred, F., et al. Ambient temperature ZrO2-doped TiO2 crystalline photocatalysts : highly efficient powders and films for water depollution. Mater. Today Energy 13 (2019), 312–322, 10.1016/j.mtener.2019.06.010.
Byrne, C., Moran, L., Hermosilla, D., Merayo, N., Blanco, Á., Rhatigan, S., et al. Effect of cu doping on the anatase-to-rutile phase transition in TiO2 photocatalysts : theory and experiments. Appl. Catal. B Environ. 246 (2019), 266–276, 10.1016/j.apcatb.2019.01.058.
Li, Q., Zhao, T., Li, M., Li, W., Yang, B., Qin, D., et al. One-step construction of Pickering emulsion via commercial TiO2 nanoparticles for photocatalytic dye degradation. Appl. Catal. B Environ. 249 (2019), 1–8, 10.1016/j.apcatb.2019.02.057.
Mahy, J.G., Paez, C.A., Carcel, C., Bied, C., Tatton, A.S., Damblon, C., et al. Porphyrin-based hybrid silica-titania as a visible-light photocatalyst. J. Photochem. Photobiol. A Chem. 373 (2019), 66–76, 10.1016/j.jphotochem.2019.01.001.
Impellizzeri, G., Scuderi, V., Romano, L., Sberna, P.M., Arcadipane, E., Sanz, R., et al. Fe ion-implanted TiO2 thin film for efficient visible-light photocatalysis Fe ion-implanted TiO2 thin film for efficient visible-light photocatalysis. J. Appl. Phys., 173507, 2016, 10.1063/1.4901208.
Gole, J.L., Stout, J.D., Burda, C., Lou, Y., Chen, X., Highly efficient formation of visible light tunable TiO2 - x N x photocatalysts and their transformation at the nanoscale. J. Phys. Chem. B. 108 (2004), 1230–1240.
Wu, T., Lin, T., Serpone, N., TiO2 -Assisted photodegradation of dyes. 9. Photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation. Environ. Sci. Technol. 33 (1999), 1379–1387.
Lee, C., Hyeon, T., Lee, H., Visible light-induced degradation of carbon tetrachloride on. Environ. Sci. Technol. 35 (2001), 966–970.
Granados O., G., Páez M., C.A., Martínez O., F., Páez-Mozo, E.A., Photocatalytic degradation of phenol on TiO2 and TiO2/Pt sensitized with metallophthalocyanines. Catal. Today 107–108 (2005), 589–594, 10.1016/j.cattod.2005.07.021.
Vaiano, V., Iervolino, G., Sannino, D., Murcia, J.J., Hidalgo, M.C., Ciambelli, P., et al. Photocatalytic removal of patent blue v dye on Au-TiO2 and Pt-TiO2 catalysts. Appl. Catal. B Environ. 188 (2016), 134–146, 10.1016/j.apcatb.2016.02.001.
Borzyszkowska, A.F., Stepnowski, P., Ofiarska, A., Pieczyn, A., Siedlecka, E.M., Pt – TiO2 -assisted photocatalytic degradation of the cytostatic drugs ifosfamide and cyclophosphamide under artificial sunlight. Chem. Eng. J. 285 (2016), 417–427, 10.1016/j.cej.2015.09.109.
Pasqualeti, A.M., Olu, P.-.Y., Chatenet, M., Lima, F.H.B., Borohydride electrooxidation on carbon-supported noble metal nanoparticles: insights into hydrogen and hydroxyborane formation. ACS Catal., 2015, 2778–2787, 10.1021/acscatal.5b00107.
Mahy, J.G., Lambert, S.D., Léonard, G.L.-M., Zubiaur, A., Olu, P.-.Y., Mahmoud, A., et al. Towards a large scale aqueous sol-gel synthesis of doped TiO2: study of various metallic dopings for the photocatalytic degradation of p-nitrophenol. J. Photochem. Photobiol. A Chem., 329, 2016, 10.1016/j.jphotochem.2016.06.029.
Amoros-Perez, A., Cano-casanova, L., Castillo-deltell, A., Lillo-Rodenas, M.A., Roman-Martinez, M.D.C., TiO2 modification with transition metallic species (Cr, Co, Ni, and Cu) for photocatalytic abatement of acetic acid in liquid phase and propene in gas phase. Materials, 12, 2019, 40, 10.3390/ma12010040.
Ohtani, B., Prieto-Mahaney, O.O., Li, D., Abe, R., What is Degussa (Evonic) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol. A Chem. 216 (2010), 179–182, 10.1016/j.jphotochem.2010.07.024.
Malengreaux, C.M., Douven, S., Poelman, D., Heinrichs, B., Bartlett, J.R., An ambient temperature aqueous sol–gel processing of efficient nanocrystalline doped TiO2-based photocatalysts for the degradation of organic pollutants. J. Sol-Gel Sci. Technol. 71 (2014), 557–570, 10.1007/s10971-014-3405-6.
Romeiro, A., Azenha, M.E., Canle, M., Rodrigues, V.H.N., Da Silva, J.P., Burrows, H.D., Titanium dioxide nanoparticle photocatalysed degradation of ibuprofen and naproxen in water: competing hydroxyl radical attack and oxidative decarboxylation by semiconductor holes. Chem. Select 3 (2018), 10915–10924, 10.1002/slct.201801953.
Mbouopda, A.P., Acayanka, E., Nzali, S., Kamgang, G.Y., Njoyim Tamungang, E.B., Laminsi, S., et al. Comparative study of plasma-synthesized and commercial-P25 TiO2 for photocatalytic discoloration of reactive red 120 dye in aqueous solution. Desalin. Water Treat. 136 (2018), 413–421, 10.5004/dwt.2018.23118.
Turkevich, J., Stevenson, P.C., Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11 (1951), 55–75, 10.1039/DF9511100055.
Zubiaur, A., Chatenet, M., Maillard, F., Lambert, S.D., Pirard, J.-.P., Job, N., Using the multiple SEA method to synthesize Pt/carbon xerogel electrocatalysts for PEMFC applications. Fuel Cells 14 (2014), 343–349, 10.1002/fuce.201300208.
Mahy, J.G., Tasseroul, L., Zubiaur, A., Geens, J., Brisbois, M., Herlitschke, M., et al. Highly dispersed iron xerogel catalysts for p-nitrophenol degradation by photo-Fenton effects. Microporous Mesoporous Mater. 197 (2014), 164–173, 10.1016/j.micromeso.2014.06.009.
Sing, K.S.W., Rouquerol, J., Characterization of solid catalysts. Handbook of Heterogeneous Catalysis, 438, 1997, 428–582, 10.1002/9783527619474.ch3a.
Lecloux, A., Exploitation des isothermes d'adsorption et de désorption d'azote pour l’étude de la texture des solides poreux. Mémoires Soc. R. Des Sci. Liège., 1971, 169–209.
Mahy, J.G., Léonard, G.L.-M., Pirard, S., Wicky, D., Daniel, A., Archambeau, C., et al. Aqueous sol-gel synthesis and film deposition methods for the large-scale manufacture of coated steel with self-cleaning properties. J. Sol-Gel Sci. Technol. 81 (2017), 27–35, 10.1007/s10971-016-4020-5.
Kubelka, P., Ein beitrag zur optik der farban striche. Z. Tech. Phys. 12 (1931), 593–603 http://ci.nii.ac.jp/naid/10008164867/en/.
Kubelka, P., New contributions to the optics of intensely light-scattering materials. J. Opt. Soc. Am. 38 (1948), 448–457, 10.1364/JOSA.44.000330.
Malengreaux, C.M., Pirard, S.L., Léonard, G., Mahy, J.G., Herlitschke, M., Klobes, B., et al. Study of the photocatalytic activity of Fe3+, Cr3+, La3+and Eu3+single-doped and co-doped TiO2 catalysts produced by aqueous sol-gel processing. J. Alloys Compd., 691, 2017, 10.1016/j.jallcom.2016.08.211.
Bryson, C.E., Surface potential control in XPS. Surf. Sci. 189/190 (1987), 50–58.
Shirley, D.A., High-resolution X-Ray photoemission spectrum of the valence bands of gold. Phys. Rev. B. 5 (1972), 4709–4714.
Páez, C.A., Liquet, D.Y., Calberg, C., Lambert, S.D., Willems, I., Germeau, A., et al. Study of photocatalytic decomposition of hydrogen peroxide over ramsdellite-MnO2 by O2-pressure monitoring. Catal. Commun. 15 (2011), 132–136, 10.1016/j.catcom.2011.08.025.
Clugston, M., Flemming, R., Advanced Chemistry. 2000.
Rajathi, F.A.A., Nambaru, V.R.M.S., Phytofabrication of nano-crystalline platinum particles by leaves of Cerbera manghas and its antibacterial efficacy. Int. J. Pharma Bio Sci. 5 (2014), 619–628.
Dang, T.M.D., Le, T.T.T., Fribourg-Blanc, E., Dang, M.C., Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv. Nat. Sci. Nanosci. Nanotechnol., 2, 2011, 015009, 10.1088/2043-6262/2/1/015009.
Bigall, N.C., Eychmüller, A., Synthesis of noble metal nanoparticles and their non-ordered superstructures synthesis of noble metal nanoparticles and their non-ordered superstructures. Philos. Trans. R. Soc. A. 368 (2010), 1385–1404, 10.1098/rsta.2009.0274.
Hore, S., Palomares, E., Smit, H., Bakker, N.J., Comte, P., Liska, P., et al. Acid versus base peptization of mesoporous nanocrystalline TiO2 films: functional studies in dye sensitized solar cells. J. Mater. Chem., 15, 2005, 412, 10.1039/b407963a.
Mahy, J.G., Deschamps, F., Collard, V., Jérôme, C., Bartlett, J., Lambert, S.D., et al. Acid acting as redispersing agent to form stable colloids from photoactive crystalline aqueous sol–gel TiO2 powder. J. Sol-Gel Sci. Technol. 87 (2018), 568–583, 10.1007/s10971-018-4751-6.
Bischoff, B., Anderson, M., Peptization process in the sol-gel preparation of porous anatase (TiO2). Chem. Mater. 7 (1995), 1772–1778.
Bodson, C.J., Heinrichs, B., Tasseroul, L., Bied, C., Mahy, J.G., Wong Chi Man, M., et al. Efficient P- and Ag-doped titania for the photocatalytic degradation of waste water organic pollutants. J. Alloys Compd. 682 (2016), 144–153 http://dx.doi.org/10.1016/j.jallcom.2016.04.295.
Léonard, G.L.-M., Malengreaux, C.M., Mélotte, Q., Lambert, S.D., Bruneel, E., Van Driessche, I., et al. Doped sol–gel films vs. powders TiO2: on the positive effect induced by the presence of a substrate. J. Environ. Chem. Eng. 4 (2016), 449–459, 10.1016/j.jece.2015.11.040.
Azouani, R., Tieng, S., Chhor, K., Bocquet, J.F., Eloy, P., Gaigneaux, E.M., et al. TiO2 doping by hydroxyurea at the nucleation stage: towards a new photocatalyst in the visible spectral range. Phys. Chem. Chem. Phys. 12 (2010), 1–10.
Bittencourt, C., Rutar, M., Umek, P., Mrzel, A., Vozel, K., Arcon, D., et al. Molecular nitrogen in N-doped TiO2 nanoribbons. RSC Adv. 5 (2015), 23350–23356, 10.1039/C4RA14410D.
Anpo, M., The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 216 (2003), 505–516, 10.1016/S0021-9517(02)00104-5.
Romero, V., Acevedo, S., Marco, P., Giménez, J., Esplugas, S., Enhancement of Fenton and photo-Fenton processes at initial circumneutral pH for the degradation of the β-blocker Metoprolol. Water Res. 88 (2016), 449–457 http://dx.doi.org/10.1016/j.watres.2015.10.035.
Chanderia, K., Kumar, S., Sharma, J., Ameta, R., Punjabi, P.B., Degradation of sunset yellow FCF using copper loaded bentonite and H2O2 as photo-Fenton like reagent. Arab. J. Chem., 2012, 2–8, 10.1016/j.arabjc.2012.07.023.
Rauf, M.A., Meetani, M.A., Hisaindee, S., An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276 (2011), 13–27, 10.1016/j.desal.2011.03.071.
Litter, M.I., Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl. Catal. B Environ. 23 (1999), 89–114, 10.1016/S0926-3373(99)00069-7.
Bard, A.J., Parsons, R., Jordan, J., Standard Potentials in Aqueous Solutions. 1985, Int. Union Pure Appl. Chem., 834.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.