scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Han, W., Kawakami, R.K., Gmitra, M., Fabian, J., Graphene spintronics. Nat nanotechnology 9:10 (2014), 794–807.
Rao, C.N., Voggu, R., Charge-transfer with graphene and nanotubes. Mater. Today 13:9 (2010), 34–40.
Das, B., Voggu, R., Rout, C.S., Rao, C.N., Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chem. Commun. 41 (2008), 5155–5157.
Limbu, T.B., Mendoza, F., Barrionuevo, D., Carpena, J., Maruyama, B., Katiyar, R.S., Weiner, B.R., Morell, G., Study on the optical and electrical properties of tetracyanoethylene doped bilayer graphene stack for transparent conducting electrodes. AIP Adv., 6(3), 2016, 035319.
Varghese, N., Ghosh, A., Voggu, R., Ghosh, S., Rao, C.N., Selectivity in the interaction of electron donor and acceptor molecules with graphene and single-walled carbon nanotubes. J. Phys. Chem. C 113:39 (2009), 16855–16859.
Hou, Y., Geng, X., Li, Y., Dong, B., Liu, L., Sun, M., Electrical and Raman properties of p-type and n-type modified graphene by inorganic quantum dot and organic molecule modification. Sci. China Phys. Mech. Astron. 54:3 (2011), 416–419.
Panchakarla, L.S., Subrahmanyam, K.S., Saha, S.K., Govindaraj, A., Krishnamurthy, H.R., Waghmare, U.V., Rao, C.N.R., Synthesis, structure, and properties of boron-, nitrogen-doped graphene. Adv. Mater. 21:46 (2009), 4726–4730.
Wang, H., Maiyalagan, T., Wang, X., Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2:5 (2012), 781–784.
Wu, Z., Han, Y., Huang, R., Chen, X., Guo, Y., He, Y., Li, W., Cai, Y., Wang, N., Semimetallic-to-metallic transition and mobility enhancement enabled by reversible iodine doping of graphene. Nanoscale 6:21 (2014), 13196–13202.
Hoyt, R.A., Remillard, E.M., Cubuk, E.D., Vecitis, C.D., Kaxiras, E., Polyiodide-doped graphene. J. Phys. Chem. C 121:1 (2017), 609–615.
Kalita, G., Wakita, K., Takahashi, M., Umeno, M., Iodine doping in solid precursor-based CVD growth graphene film. J. Mater. Chem. 21:39 (2011), 15209–15213.
Karlický F., Kumara Ramanatha Datta, K., Otyepka, M., Zbořil, R., Halogenated graphenes: rapidly growing family of graphene derivatives. ACS Nano 7:8 (2013), 6434–6464.
Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S., Katsnelson, M.I., Fluorographene: a two-dimensional counterpart of Teflon. Small 6:24 (2010), 2877–2884.
Şahin, H., Topsakal, M., Ciraci, S., Structures of fluorinated graphene and their signatures. Phys. Rev. B, 83(11), 2011, 115432.
Nakada, K., Ishii, A., DFT calculation for adatom adsorption on graphene. Graphene Simulation, 2011, InTech.
Zhao, R., Jayasingha, R., Sherehiy, A., Dharmasena, R., Akhtar, M., Jasinski, J.B., Wu, S.Y., Henner, V., Sumanasekera, G.U., In situ transport measurements and band gap formation of fluorinated graphene. J. Phys. Chem. C 119:34 (2015), 20150–20155.
Withers, F., Russo, S., Dubois, M., Craciun, M.F., Tuning the electronic transport properties of graphene through functionalisation with fluorine. Nanoscale Res Lett, 6(1), 2011, 526.
Lee, W.H., Suk, J.W., Chou, H., Lee, J., Hao, Y., Wu, Y., Piner, R., Akinwande, D., Kim, K.S., Ruoff, R.S., Selective-area fluorination of graphene with fluoropolymer and laser irradiation. Lettres 12:5 (2012), 2374–2378.
Santos, H., Henrard, L., Fluorine adsorption on single and bilayer graphene: role of sublattice and layer decoupling. J. Phys. Chem. C 118:46 (2014), 27074–27080.
Liu, H.Y., Hou, Z.F., Hu, C.H., Yang, Y., Zhu, Z.Z., Electronic and magnetic properties of fluorinated graphene with different coverage of fluorine. J. Phys. Chem. C 116:34 (2012), 18193–18201.
Zhou, S., Sherpa, S.D., Hess, D.W., Bongiorno, A., Chemical bonding of partially fluorinated graphene. J. Phys. Chem. C 118:45 (2014), 26402–26408.
Nguyen, K.D., Tran, T.N., Nguyen, T.T., Chiu, Y.H., Lin, M.F., Essential Properties of Fluorinated Graphene and Graphene Nanoribbons. 2017 Dec 8 arXiv preprint arXiv:1712.03824.
Karlický F., Zbořil, R., Otyepka, M., Band gaps and structural properties of graphene halides and their derivates: a hybrid functional study with localized orbital basis sets. J. Chem. Phys., 137(3), 2012, 034709.
Shi, H., Pan, H., Zhang, Y.W., Yakobson, B.I., Electronic and magnetic properties of graphene/fluorographene superlattices. J. Phys. Chem. C 116:34 (2012), 18278–18283.
Haddon, R.C., GVB and POAV analysis of rehybridization and π-orbital misalignment in non-planar conjugated systems. Chem. Phys. Lett. 125:3 (1986), 231–234.
Haddon, R.C., Scott, L.T., π-Orbital conjugation and rehybridization in bridged annulenes and deformed molecules in general: π-orbital axis vector analysis. Pure Appl. Chem. 58:1 (1986), 137–142.
Palmer, R.E., Haddon, R.C., Kroto, H.W., Sermon, P.A., The fullerenes: powerful carbon-based electron acceptors: discussion. Philos. Trans. R. Soc. London, Ser. A 343 (1993), 61–62.
Marsusi, F., Qasemnazhand, M., Sila-fulleranes: promising chemically active fullerene analogs. Nanotechnology, 27(27), 2016, 275704.
Casolo, S., Løvvik, O.M., Martinazzo, R., Tantardini, G.F., Understanding adsorption of hydrogen atoms on graphene. J. Chem. Phys., 130(5), 2009, 054704.
Šljivančanin, Ž., Balog, R., Hornekær, L., Magnetism in graphene induced by hydrogen adsorbates. Chem. Phys. Lett. 541 (2012), 70–74.
Sofo, J.O., Suarez, A.M., Usaj, G., Cornaglia, P.S., Hernández-Nieves, A.D., Balseiro, C.A., Electrical control of the chemical bonding of fluorine on graphene. Phys. Rev. B, 83(8), 2011, 081411.
Sadeghi, A., Neek-Amal, M., Berdiyorov, G.R., Peeters, F.M., Diffusion of fluorine on and between graphene layers. Phys. Rev. B, 91(1), 2015, 014304.
Santos, E.J., Ayuela, A., Sánchez-Portal, D., Universal magnetic properties of sp 3 -type defects in covalently functionalized graphene. New J. Phys., 14(4), 2012, 043022.
Kim, H.J., Cho, J.H., Fluorine-induced local magnetic moment in graphene: a hybrid DFT study. Phys. Rev. B, 87(17), 2013, 174435.
Nair, R.R., Sepioni, M., Tsai, I.L., Lehtinen, O., Keinonen, J., Krasheninnikov, A.V., Thomson, T., Geim, A.K., Grigorieva, I.V., Spin-half paramagnetism in graphene induced by point defects. Nat. Phys., 8(3), 2012, 199.
Gonze, X., Beuken, J.M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F., Torrent, M., First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25:3 (2002), 478–492.
http://lammps.sandia.gov.
Van Duin, A.C., Dasgupta, S., Lorant, F., Goddard, W.A., ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. 105:41 (2001), 9396–9409.
Singh, S.K., Srinivasan, S.G., Neek-Amal, M., Costamagna, S., Van Duin, A.C., Peeters, F.M., Thermal properties of fluorinated graphene. Phys. Rev. B, 87(10), 2013, 104114.
Singh, S.K., Singh, S.K., Costamagna, S., Neek-Amal, M., Peeters, F.M., J. Phys. Chem. C, 118, 2013, 4460.
Himmetoglu, B., Floris, A., De Gironcoli, S., Cococcioni, M., Hubbard-corrected DFT energy functionals: the LDA+ U description of correlated systems. Int. J. Quant. Chem. 114:1 (2014), 14–49.
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter, 21(39), 2009, 395502.
Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27:15 (2006), 1787–1799.
Jónsson, H., Mills, G., Jacobsen, K.W., Nudged elastic band method for finding minimum energy paths of transitions. Classical and Quantum Dynamics in Condensed Phase Simulations, 1998, 385–404.
Wehling, T.O., Katsnelson, M.I., Lichtenstein, A.I., Impurities on graphene: midgap states and migration barriers. Phys. Rev. B, 80(8), 2009, 085428.
Löwdin, P.O., Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev., 97(6), 1955, 1474.
Makov, G., Payne, M.C., Periodic boundary conditions in ab initio calculations. Phys. Rev. B, 51(7), 1995, 4014.
National standard reference data series. National bureau of standards, No. 31, Washington, DC, 1970; benson SW. III-bond energies. J Chem. Educ., 42(9), 1965, 502.
Nakajima, T., (eds.) Fluorine-carbon and Fluoride-carbon Materials: Chemistry, Physics, and Applications, 2001, CRC Press.
Nakajima, T., Groult, H., (eds.) Fluorinated Materials for Energy Conversion, 2005, Elsevier.
Rudenko, A.N., Keil, F.J., Katsnelson, M.I., Lichtenstein, A.I., Adsorption of diatomic halogen molecules on graphene: a van der Waals density functional study. Phys. Rev. B, 82(3), 2010, 035427.
Yang, Y., Liu, F.C., Kawazoe, Y., Adsorption and diffusion of F 2 molecules on pristine graphene. Chin. Phys. B, 27(10), 2018, 106801.
Casolo, S., Flage-Larsen, E., Løvvik, O.M., Darling, G.R., Tantardini, G.F., Role of the self-interaction error in studying chemisorption on graphene from first-principles. Phys. Rev. B, 81(20), 2010, 205412.
Ruiz, E., Salahub, D.R., Vela, A., Charge-transfer complexes: stringent tests for widely used density functionals. J. Phys. Chem. 100:30 (1996), 12265–12276.
Perdew JP, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Spurious fractional charge on dissociated atoms: pervasive and resilient self-interaction error of common density functionals. J. Chem. Phys., 125(19), 2006, 194112.
Marsusi, F., Verstraete, M.J., Localization of Electrons and Magnetization in Fluoro-graphene: a DFT+ U Study. 2017 Sep 27 arXiv preprint arXiv:1709.09363.
Lieb, E.H., Two theorems on the Hubbard model. Phys. Rev. Lett., 62(10), 1989, 1201.
Zhou, J., Liang, Q., Dong, J., Enhanced spin–orbit coupling in hydrogenated and fluorinated graphene. Carbon 48:5 (2010), 1405–1409.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.