Rao, C.N., Voggu, R., Charge-transfer with graphene and nanotubes. Mater. Today 13:9 (2010), 34–40.
Das, B., Voggu, R., Rout, C.S., Rao, C.N., Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chem. Commun. 41 (2008), 5155–5157.
Limbu, T.B., Mendoza, F., Barrionuevo, D., Carpena, J., Maruyama, B., Katiyar, R.S., Weiner, B.R., Morell, G., Study on the optical and electrical properties of tetracyanoethylene doped bilayer graphene stack for transparent conducting electrodes. AIP Adv., 6(3), 2016, 035319.
Varghese, N., Ghosh, A., Voggu, R., Ghosh, S., Rao, C.N., Selectivity in the interaction of electron donor and acceptor molecules with graphene and single-walled carbon nanotubes. J. Phys. Chem. C 113:39 (2009), 16855–16859.
Hou, Y., Geng, X., Li, Y., Dong, B., Liu, L., Sun, M., Electrical and Raman properties of p-type and n-type modified graphene by inorganic quantum dot and organic molecule modification. Sci. China Phys. Mech. Astron. 54:3 (2011), 416–419.
Panchakarla, L.S., Subrahmanyam, K.S., Saha, S.K., Govindaraj, A., Krishnamurthy, H.R., Waghmare, U.V., Rao, C.N.R., Synthesis, structure, and properties of boron-, nitrogen-doped graphene. Adv. Mater. 21:46 (2009), 4726–4730.
Wang, H., Maiyalagan, T., Wang, X., Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2:5 (2012), 781–784.
Wu, Z., Han, Y., Huang, R., Chen, X., Guo, Y., He, Y., Li, W., Cai, Y., Wang, N., Semimetallic-to-metallic transition and mobility enhancement enabled by reversible iodine doping of graphene. Nanoscale 6:21 (2014), 13196–13202.
Hoyt, R.A., Remillard, E.M., Cubuk, E.D., Vecitis, C.D., Kaxiras, E., Polyiodide-doped graphene. J. Phys. Chem. C 121:1 (2017), 609–615.
Kalita, G., Wakita, K., Takahashi, M., Umeno, M., Iodine doping in solid precursor-based CVD growth graphene film. J. Mater. Chem. 21:39 (2011), 15209–15213.
Karlický F., Kumara Ramanatha Datta, K., Otyepka, M., Zbořil, R., Halogenated graphenes: rapidly growing family of graphene derivatives. ACS Nano 7:8 (2013), 6434–6464.
Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S., Katsnelson, M.I., Fluorographene: a two-dimensional counterpart of Teflon. Small 6:24 (2010), 2877–2884.
Şahin, H., Topsakal, M., Ciraci, S., Structures of fluorinated graphene and their signatures. Phys. Rev. B, 83(11), 2011, 115432.
Nakada, K., Ishii, A., DFT calculation for adatom adsorption on graphene. Graphene Simulation, 2011, InTech.
Zhao, R., Jayasingha, R., Sherehiy, A., Dharmasena, R., Akhtar, M., Jasinski, J.B., Wu, S.Y., Henner, V., Sumanasekera, G.U., In situ transport measurements and band gap formation of fluorinated graphene. J. Phys. Chem. C 119:34 (2015), 20150–20155.
Withers, F., Russo, S., Dubois, M., Craciun, M.F., Tuning the electronic transport properties of graphene through functionalisation with fluorine. Nanoscale Res Lett, 6(1), 2011, 526.
Lee, W.H., Suk, J.W., Chou, H., Lee, J., Hao, Y., Wu, Y., Piner, R., Akinwande, D., Kim, K.S., Ruoff, R.S., Selective-area fluorination of graphene with fluoropolymer and laser irradiation. Lettres 12:5 (2012), 2374–2378.
Santos, H., Henrard, L., Fluorine adsorption on single and bilayer graphene: role of sublattice and layer decoupling. J. Phys. Chem. C 118:46 (2014), 27074–27080.
Liu, H.Y., Hou, Z.F., Hu, C.H., Yang, Y., Zhu, Z.Z., Electronic and magnetic properties of fluorinated graphene with different coverage of fluorine. J. Phys. Chem. C 116:34 (2012), 18193–18201.
Zhou, S., Sherpa, S.D., Hess, D.W., Bongiorno, A., Chemical bonding of partially fluorinated graphene. J. Phys. Chem. C 118:45 (2014), 26402–26408.
Nguyen, K.D., Tran, T.N., Nguyen, T.T., Chiu, Y.H., Lin, M.F., Essential Properties of Fluorinated Graphene and Graphene Nanoribbons. 2017 Dec 8 arXiv preprint arXiv:1712.03824.
Karlický F., Zbořil, R., Otyepka, M., Band gaps and structural properties of graphene halides and their derivates: a hybrid functional study with localized orbital basis sets. J. Chem. Phys., 137(3), 2012, 034709.
Shi, H., Pan, H., Zhang, Y.W., Yakobson, B.I., Electronic and magnetic properties of graphene/fluorographene superlattices. J. Phys. Chem. C 116:34 (2012), 18278–18283.
Haddon, R.C., GVB and POAV analysis of rehybridization and π-orbital misalignment in non-planar conjugated systems. Chem. Phys. Lett. 125:3 (1986), 231–234.
Haddon, R.C., Scott, L.T., π-Orbital conjugation and rehybridization in bridged annulenes and deformed molecules in general: π-orbital axis vector analysis. Pure Appl. Chem. 58:1 (1986), 137–142.
Palmer, R.E., Haddon, R.C., Kroto, H.W., Sermon, P.A., The fullerenes: powerful carbon-based electron acceptors: discussion. Philos. Trans. R. Soc. London, Ser. A 343 (1993), 61–62.
Marsusi, F., Qasemnazhand, M., Sila-fulleranes: promising chemically active fullerene analogs. Nanotechnology, 27(27), 2016, 275704.
Casolo, S., Løvvik, O.M., Martinazzo, R., Tantardini, G.F., Understanding adsorption of hydrogen atoms on graphene. J. Chem. Phys., 130(5), 2009, 054704.
Šljivančanin, Ž., Balog, R., Hornekær, L., Magnetism in graphene induced by hydrogen adsorbates. Chem. Phys. Lett. 541 (2012), 70–74.
Sofo, J.O., Suarez, A.M., Usaj, G., Cornaglia, P.S., Hernández-Nieves, A.D., Balseiro, C.A., Electrical control of the chemical bonding of fluorine on graphene. Phys. Rev. B, 83(8), 2011, 081411.
Sadeghi, A., Neek-Amal, M., Berdiyorov, G.R., Peeters, F.M., Diffusion of fluorine on and between graphene layers. Phys. Rev. B, 91(1), 2015, 014304.
Santos, E.J., Ayuela, A., Sánchez-Portal, D., Universal magnetic properties of sp 3 -type defects in covalently functionalized graphene. New J. Phys., 14(4), 2012, 043022.
Kim, H.J., Cho, J.H., Fluorine-induced local magnetic moment in graphene: a hybrid DFT study. Phys. Rev. B, 87(17), 2013, 174435.
Nair, R.R., Sepioni, M., Tsai, I.L., Lehtinen, O., Keinonen, J., Krasheninnikov, A.V., Thomson, T., Geim, A.K., Grigorieva, I.V., Spin-half paramagnetism in graphene induced by point defects. Nat. Phys., 8(3), 2012, 199.
Gonze, X., Beuken, J.M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F., Torrent, M., First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25:3 (2002), 478–492.
http://lammps.sandia.gov.
Van Duin, A.C., Dasgupta, S., Lorant, F., Goddard, W.A., ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. 105:41 (2001), 9396–9409.
Singh, S.K., Srinivasan, S.G., Neek-Amal, M., Costamagna, S., Van Duin, A.C., Peeters, F.M., Thermal properties of fluorinated graphene. Phys. Rev. B, 87(10), 2013, 104114.
Singh, S.K., Singh, S.K., Costamagna, S., Neek-Amal, M., Peeters, F.M., J. Phys. Chem. C, 118, 2013, 4460.
Himmetoglu, B., Floris, A., De Gironcoli, S., Cococcioni, M., Hubbard-corrected DFT energy functionals: the LDA+ U description of correlated systems. Int. J. Quant. Chem. 114:1 (2014), 14–49.
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter, 21(39), 2009, 395502.
Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27:15 (2006), 1787–1799.
Jónsson, H., Mills, G., Jacobsen, K.W., Nudged elastic band method for finding minimum energy paths of transitions. Classical and Quantum Dynamics in Condensed Phase Simulations, 1998, 385–404.
Wehling, T.O., Katsnelson, M.I., Lichtenstein, A.I., Impurities on graphene: midgap states and migration barriers. Phys. Rev. B, 80(8), 2009, 085428.
Löwdin, P.O., Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev., 97(6), 1955, 1474.
Makov, G., Payne, M.C., Periodic boundary conditions in ab initio calculations. Phys. Rev. B, 51(7), 1995, 4014.
National standard reference data series. National bureau of standards, No. 31, Washington, DC, 1970; benson SW. III-bond energies. J Chem. Educ., 42(9), 1965, 502.
Nakajima, T., (eds.) Fluorine-carbon and Fluoride-carbon Materials: Chemistry, Physics, and Applications, 2001, CRC Press.
Nakajima, T., Groult, H., (eds.) Fluorinated Materials for Energy Conversion, 2005, Elsevier.
Rudenko, A.N., Keil, F.J., Katsnelson, M.I., Lichtenstein, A.I., Adsorption of diatomic halogen molecules on graphene: a van der Waals density functional study. Phys. Rev. B, 82(3), 2010, 035427.
Yang, Y., Liu, F.C., Kawazoe, Y., Adsorption and diffusion of F 2 molecules on pristine graphene. Chin. Phys. B, 27(10), 2018, 106801.
Casolo, S., Flage-Larsen, E., Løvvik, O.M., Darling, G.R., Tantardini, G.F., Role of the self-interaction error in studying chemisorption on graphene from first-principles. Phys. Rev. B, 81(20), 2010, 205412.
Ruiz, E., Salahub, D.R., Vela, A., Charge-transfer complexes: stringent tests for widely used density functionals. J. Phys. Chem. 100:30 (1996), 12265–12276.
Perdew JP, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Spurious fractional charge on dissociated atoms: pervasive and resilient self-interaction error of common density functionals. J. Chem. Phys., 125(19), 2006, 194112.
Marsusi, F., Verstraete, M.J., Localization of Electrons and Magnetization in Fluoro-graphene: a DFT+ U Study. 2017 Sep 27 arXiv preprint arXiv:1709.09363.
Lieb, E.H., Two theorems on the Hubbard model. Phys. Rev. Lett., 62(10), 1989, 1201.
Zhou, J., Liang, Q., Dong, J., Enhanced spin–orbit coupling in hydrogenated and fluorinated graphene. Carbon 48:5 (2010), 1405–1409.