[en] Echinoderms form a remarkable phylum of marine invertebrates that present specific chemical signatures unique in the animal kingdom. It is particularly the case for essential triterpenoids that evolved separately in each of the five echinoderm classes. Indeed, while most animals have ∆5-sterols, sea cucumbers (Holothuroidea) and sea stars (Asteroidea) also possess ∆7 and ∆9(11)-sterols, a characteristic not shared with brittle stars (Ophiuroidea), sea urchins (Echinoidea), and crinoids (Crinoidea). These particular ∆7 and ∆9(11) sterols emerged as a self-protection against membranolytic saponins that only sea cucumbers and sea stars produce as a defense mechanism. The diversity of saponins is large; several hundred molecules have been described in the two classes of these saponins (i.e., triterpenoid or steroid saponins). This review aims to highlight the diversity of triterpenoids in echinoderms by focusing on sterols and triterpenoid glycosides, but more importantly to provide an updated view of the biosynthesis of these molecules in echinoderms.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Claereboudt, Emily ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie des agro-biosystèmes
Caulier, Guillaume; Université de Mons - UMONS > Biology of Marine Organisms and Biomimetics Unit
Decroo, Corentin; Université de Mons - UMONS > Organic Synthesis and Mass Spectrometry Laboratory
Colson, Emmanuel; Université de Mons - UMONS > Organic Synthesis and Mass Spectrometry Laboratory
Gerbaux; Université de Mons - UMONS > Organic Synthesis and Mass Spectrometry Laboratory,
Claereboudt, Michel; Sultan Quaboos University > Department of Marine Science and Fisheries
Schaller, Hubert; Universite de Strasbourg > Institut de Biologie Moléculaire des Plantes du CNRS
Flammang, Patrick; Université de Mons - UMONS > Biology of Marine Organisms and Biomimetics Unit
Deleu, Magali ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie des agro-biosystèmes
Eeckhaut, Igor; Université de Mons - UMONS > Biology of Marine Organisms and Biomimetics Unit
Language :
English
Title :
Triterpenoids in Echinoderms: Fundamental Differences in Diversity and Biosynthetic Pathways
Publication date :
13 June 2019
Journal title :
Marine Drugs
ISSN :
1660-3397
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
Bourlat, S.J.; Juliusdottir, T.; Lowe, C.J.; Freeman, R.; Aronowicz, J.; Kirschner, M.; Lander, E.S.; Thorndyke, M.; Nakano, H.; Kohn, A.B.; et al. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 2006, 444, 85–88. [CrossRef]
Brusca, R.; Brusca, G. Invertebrates; Sinauer Associates: Sunderland, MA, USA, 2003.
Coulon, P.; Jangoux, M. Feeding rate and sediment reworking by the holothuroid Holothuria tubulosa (Echinodermata) in a Mediterranean seagrass bed off Ischia Island, Italy. Mar. Ecol. Prog. Ser. 1993, 92, 201–204. [CrossRef]
MacTavish, T.; Stenton-Dozey, J.; Vopel, K.; Savage, C. Deposit-Feeding Sea Cucumbers Enhance Mineralization and Nutrient Cycling in Organically-Enriched Coastal Sediments. PLoS ONE 2012, 7, e50031. [CrossRef]
Purcell, S.; Conand, C.; Uthicke, S.; Byrne, M. Ecological Roles of Exploited Sea Cucumbers. Oceanogr. Mar. Biol. 2016, 54, 367–386.
Haefner, B. Drugs from the deep: Marine natural products as drug candidates. Drug Discov. Today 2003, 8, 536–544. [CrossRef]
Bordbar, S.; Anwar, F.; Saari, N. High-value components and bioactives from sea cucumbers for functional foods—A review. Marine Drugs 2011, 9, 1761–1805. [CrossRef]
Brasseur, L.; Hennebert, E.; Fievez, L.; Caulier, G.; Bureau, F.; Tafforeau, L.; Flammang, P.; Gerbaux, P.; Eeckhaut, I. The Roles of Spinochromes in Four Shallow Water Tropical Sea Urchins and Their Potential as Bioactive Pharmacological Agents. Marine Drugs 2017, 15, 179. [CrossRef]
Brasseur, L.; Demeyer, M.; Decroo, C.; Caulier, G.; Flammang, P.; Gerbaux, P.; Eeckhaut, I. Identification and quantification of spinochromes in body compartments of Echinometra mathaei’s coloured types. R. Soc. Open Sci. 2018, 5, 171213. [CrossRef]
Brasseur, L.; Caulier, G.; Flammang, P.; Gerbaux, P.; Eeckhaut, I. Mapping of Spinochromes in the Body of Three Tropical Shallow Water Sea Urchins. Nat. Prod. Commun. 2018, 13. [CrossRef]
Bartolini, G.L.; Erdman, T.; Scheuer, P. Anthraquinone pigments from the crinoid Comanthus bennetti. Tetrahedron 1973, 29, 3699–3702. [CrossRef]
Caulier, G.; Van Dyck, S.; Gerbaux, P.; Eeckhaut, I.; Flammang, P. Review of saponin diversity in sea cucumbers belonging to the family Holothuriidae. SPC Beche-de-mer Inf. Bull 2011, 31, 48–54.
Demeyer, M.; De Winter, J.; Caulier, G.; Eeckhaut, I.; Flammang, P.; Gerbaux, P. Molecular diversity and body distribution of saponins in the sea star Asterias rubens by mass spectrometry. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2014, 168, 1–11. [CrossRef]
Riccio, R.; D’Auria, M.V.; Minale, L. Unusual sulfated marine steroids from the ophiuroid Ophioderma longicaudum. Tetrahedron 1985, 41, 6041–6046. [CrossRef]
Rideout, J.A.; Smith, N.B.; Sutherland, M.D. Chemical defense of crinoids by polyketide sulphates. Experientia 1979, 35, 1273–1274. [CrossRef]
Van Dyck, S.; Caulier, G.; Todesco, M.; Gerbaux, P.; Fournier, I.; Wisztorski, M.; Flammang, P. The triterpene glycosides of Holothuria forskali: Usefulness and efficiency as a chemical defense mechanism against predatory fish. J. Exp. Biol. 2011, 214, 1347–1356. [CrossRef]
Popov, A.A.; Kalinovskaia, N.I.; Kuznetsova, T.A.; Agafonova, I.G.; Anisimov, M.M. Role of sterols in the membranotropic activity of triterpene glycosides. Antibiotiki 1983, 28, 656–659.
Claereboudt, E.; Eeckhaut, I.; Lins, L.; Deleu, M. How different sterols contribute to saponin tolerant plasma membranes in sea cucumbers. Sci. Rep. 2018, 8, 10845. [CrossRef]
Goad, L.J. Sterol biosynthesis and metabolism in marine invertebrates. Pure Appl. Chem. 1981, 53, 837. [CrossRef]
London, E. Insights into lipid raft structure and formation from experiments in membranes. Curr. Opin. Struct. Biol. 2002, 12, 480–486. [CrossRef]
Tyler, K.M.; Fridberg, A.; Toriello, K.M.; Olson, C.L.; Cieslak, J.A.; Hazlett, T.L.; Engman, D.M. Flagellar membrane localization via association with lipid rafts. J. Cell Sci. 2009, 122, 859–866. [CrossRef]
Jacobson, K.; Dietrich, C. Looking at lipid rafts? Trends Cell Biol. 1999, 9, 87–91. [CrossRef]
Brown, D.A.; London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 2000, 275, 17221–17224. [CrossRef] [PubMed]
Anderson, R.G.; Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 2002, 296, 1821–1825. [CrossRef]
Desmond, E.; Gribaldo, S. Phylogenomics of sterol synthesis: Insights into the origin, evolution, and diversity of a key eukaryotic feature. Genome Biol. Evolut. 2009, 1, 364–381. [CrossRef] [PubMed]
Weete, J.D.; Abril, M.; Blackwell, M. Phylogenetic Distribution of Fungal Sterols. PLoS ONE 2010, 5, e10899. [CrossRef]
Bergmann, W.; McLean, M.J.; Lester, D. Contributions to the study of marine products. Xiii. Sterols from various marine invertebrates. J. Org. Chem. 1943, 8, 271–282. [CrossRef]
Ikekawa, N. Chapter 8 Structures, Biosynthesis and Function of Sterols in Invertebrates. In New Comprehensive Biochemistry; Danielsson, H., Sjövall, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1985; Volume 12, pp. 199–230.
Bergmann, W. Comparative biochemical studies on the lipids of marine invertebrates, with special reference to the sterols. J. Mar. Res 1949, 8, 137–176.
Bergmann, W. Sterols: Their structure and distribution. Comp. Biochem. 1962, 103–162.
Toyama, Y. Die Sterine der fetten Öle von wirbellosen Wassertieren. Fette Seifen Anstrich. 1958, 60, 909–915. [CrossRef]
Austin, J. The Sterols of Marine Invertebrates and Plants. In Advances in Steroid Biochemistry and Pharmacology; Briggs, M.H., Ed.; Academic Press: London, UK; New York, NY, USA, 1970; Volume 1, pp. 73–96.
Stonik, V.A.; Elyakov, G.B. Secondary Metabolites from Echinoderms as Chemotaxonomic Markers. In Bioorganic Marine Chemistry; Springer: Berlin/Heidelberg, Germany, 1988; pp. 43–86.
Stonik, V.A.; Ponomarenko, L.P.; Makarieva, T.N.; Boguslavsky, V.M.; Dmitrenok, A.S.; Fedorov, S.N.; Strobikin, S.A. Free sterol compositions from the sea cucumbers Pseudostichopus trachus, Holothuria (Microtele) nobilis, Holothuria scabra, Trochostoma orientale and Bathyplotes natans. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1998, 120, 337–347. [CrossRef]
Brasseur, L.; Parmentier, E.; Caulier, G.; Vanderplanck, M.; Michez, D.; Flammang, P.; Gerbaux, P.; Lognay, G.; Eeckhaut, I. Mechanisms involved in pearlfish resistance to holothuroid toxins. Mar. Biol. 2016, 163, 129. [CrossRef]
Popov, A.M. Comparative Study of Effects of Various Sterols and Triterpenoids on Permeability of Model Lipid Membranes. J. Evolut. Biochem. Physiol. 2003, 39, 314–320. [CrossRef]
Li, R.; Zhou, Y.; Wu, Z.; Ding, L. ESI-QqTOF-MS/MS and APCI-IT-MS/MS analysis of steroid saponins from the rhizomes of Dioscorea panthaica. J. Mass Spectrom. 2006, 41, 1–22. [CrossRef] [PubMed]
Genta-Jouve, G.; Boughanem, C.; Ocaña, O.; Pérez, T.; Thomas, O.P. Eryloside W, a triterpenoid saponin from the sponge Dictyonella marsilii. Phytochem. Lett. 2015, 13, 252–255. [CrossRef]
Kubanek, J.; Whalen, K.E.; Engel, S.; R Kelly, S.; Henkel, T.; Fenical, W.; Pawlik, J. Multiple defensive roles for triterpene glycosides from two Caribbean sponges. Oecologia 2002, 131, 125–136. [CrossRef] [PubMed]
Calabro, K.; Kalahroodi, E.L.; Rodrigues, D.; Diaz, C.; Cruz, M.; Cautain, B.; Laville, R.; Reyes, F.; Perez, T.; Soussi, B.; et al. Poecillastrosides, Steroidal Saponins from the Mediterranean Deep-Sea Sponge Poecillastra compressa (Bowerbank, 1866). Mar. Drugs 2017, 15. [CrossRef]
Nigrelli, R. The effects of holothurin on fish, and mice with sarcoma 180. Zoologica 1952, 37, 89–90.
Yamanouchi, T. On the poisonous substance contained in holothurians. Publ. Seto Mar. Biol. Lab. 1955, 4, 183–203. [CrossRef]
Mackie, A.M.; Turner, A.B. Partial characterization of a biologically active steroid glycoside isolated from the starfish Marthasterias glacialis. Biochem. J. 1970, 117, 543–550. [CrossRef] [PubMed]
Kitagawa, I.; Kobayashi, M. On the structure of the major saponin from the starfish Acanthaster planci. Tetrahedron Lett. 1977, 18, 859–862. [CrossRef]
Kubanek, J.; Pawlik, J.; Eve, T.; Fenical, W. Triterpene glycosides defend the Caribbean reef sponge Erylus formosus from predatory fishes. Mar. Ecol. Prog. Series 2000, 207, 69–77. [CrossRef]
Van Dyck, S.; Gerbaux, P.; Flammang, P. Elucidation of molecular diversity and body distribution of saponins in the sea cucumber Holothuria forskali (Echinodermata) by mass spectrometry. Compar. Biochem. Physiol. Part B Biochem. Mol. Biol. 2009, 152, 124–134. [CrossRef]
Demeyer, M.; Wisztorski, M.; Decroo, C.; De Winter, J.; Caulier, G.; Hennebert, E.; Eeckhaut, I.; Fournier, I.; Flammang, P.; Gerbaux, P. Inter- and intra-organ spatial distributions of sea star saponins by MALDI imaging. Anal. Bioanal. Chem. 2015, 407, 8813–8824. [CrossRef]
Mitu, S.A.; Bose, U.; Suwansa-Ard, S.; Turner, L.H.; Zhao, M.; Elizur, A.; Ogbourne, S.M.; Shaw, P.N.; Cummins, S.F. Evidence for a Saponin Biosynthesis Pathway in the Body Wall of the Commercially Significant Sea Cucumber Holothuria scabra. Mar. Drugs 2017, 15, 349. [CrossRef]
Moses, T.; Pollier, J.; Almagro, L.; Buyst, D.; Van Montagu, M.; Pedreno, M.A.; Martins, J.C.; Thevelein, J.M.; Goossens, A. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16alpha hydroxylase from Bupleurum falcatum. Proc. Natl. Acad. Sci. USA 2014, 111, 1634–1639. [CrossRef]
Kalinin, V.; Silchenko, A.; Avilov, S.; Stonik, V.A.; Smirnov, A. Sea Cucumbers Triterpene Glycosides, the Recent Progress in Structural Elucidation and Chemotaxonomy. Phytochem. Rev. 2005, 4, 221–236. [CrossRef]
Bahrami, Y.; Franco, C.M. Structure elucidation of new acetylated saponins, Lessoniosides A, B, C, D, and E, and non-acetylated saponins, Lessoniosides F and G, from the viscera of the sea cucumber Holothuria lessoni. Mar. Drugs 2015, 13, 597–617. [CrossRef]
Caulier, G.; Mezali, K.; Soualili, D.L.; Decroo, C.; Demeyer, M.; Eeckhaut, I.; Gerbaux, P.; Flammang, P. Chemical characterization of saponins contained in the body wall and the Cuvierian tubules of the sea cucumber Holothuria (Platyperona) sanctori (Delle Chiaje, 1823). Biochem. Syst. Ecol. 2016, 68, 119–127. [CrossRef]
Decroo, C.; Colson, E.; Demeyer, M.; Lemaur, V.; Caulier, G.; Eeckhaut, I.; Cornil, J.; Flammang, P.; Gerbaux, P. Tackling saponin diversity in marine animals by mass spectrometry: Data acquisition and integration. Anal. Bioanal. Chem. 2017, 409, 3115–3126. [CrossRef] [PubMed]
Kobayashi, M.; Hori, M.; Kan, K.; Yasuzawa, T.; Matsui, M.; Suzuki, S.; Kitagawa, I. Marine Natural Products. XXVII. Distribution of Lanostane-Type Triterpene Oligoglycosides in Ten Kinds of Okinawan Sea Cucumbers. Chem. Pharm. Bull. 1991, 39, 2282–2287. [CrossRef]
Van Dyck, S.; Flammang, P.; Meriaux, C.; Bonnel, D.; Salzet, M.; Fournier, I.; Wisztorski, M. Localization of Secondary Metabolites in Marine Invertebrates: Contribution of MALDI MSI for the Study of Saponins in Cuvierian Tubules of H. forskali. PLoS ONE 2010, 5, e13923. [CrossRef] [PubMed]
Iyengar, E.V.; Harvell, C.D. Predator deterrence of early developmental stages of temperate lecithotrophic asteroids and holothuroids. J. Exp. Mar. Biol. Ecol. 2001, 264, 171–188. [CrossRef]
Bondoc, K.G.; Lee, H.; Cruz, L.J.; Lebrilla, C.B.; Juinio-Menez, M.A. Chemical fingerprinting and phylogenetic mapping of saponin congeners from three tropical holothurian sea cucumbers. Compar. Biochem. Physiol. Part B Biochem. Mol. Biol. 2013, 166, 182–193. [CrossRef] [PubMed]
Honey-Escandón, M.; Arreguín-Espinosa, R.; Solís-Marín, F.A.; Samyn, Y. Biological and taxonomic perspective of triterpenoid glycosides of sea cucumbers of the family Holothuriidae (Echinodermata, Holothuroidea). Compar. Biochem. Physiol. Part B Biochem. Mol. Biol. 2015, 180, 16–39. [CrossRef] [PubMed]
Bahrami, Y.; Zhang, W.; Chataway, T.; Franco, C. Structure elucidation of five novel isomeric saponins from the viscera of the sea cucumber Holothuria lessoni. Mar. Drugs 2014, 12, 4439–4473. [CrossRef]
Bahrami, Y.; Franco, C. Acetylated triterpene glycosides and their biological activity from holothuroidea reported in the past six decades. Mar. Drugs 2016, 14, 147. [CrossRef]
D’Auria, M.V.; Minale, L.; Riccio, R. Polyoxygenated steroids of marine origin. Chem. Rev. 1993, 93, 1839–1895. [CrossRef]
Maier, M.S. Biological Activities of Sulfated Glycosides from Echinoderms. In Studies in Natural Products Chemistry; Atta ur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 35, pp. 311–354.
Xiao, G.; Yu, B. Total synthesis of starfish saponin goniopectenoside B. Chemistry 2013, 19, 7708–7712. [CrossRef] [PubMed]
Iorrizzi, M.; Marino, S.; Zollo, F. Steroidal oligoglycosides from the Asteroidea. Curr. Org. Chem. 2001, 5, 951–973. [CrossRef]
Kicha, A.A.; Ivanchina, N.; Kalinovsky, A.; Dmitrenok, P.S.; Stonik, V.A. Sulfated Steroid Compounds from the Starfish Aphelasterias japonica of the Kuril Population. Russ. Chem. Bull. 2001, 50, 724–727. [CrossRef]
Caulier, G.; Flammang, P.; Gerbaux, P.; Eeckhaut, I. When a repellent becomes an attractant: Harmful saponins are kairomones attracting the symbiotic Harlequin crab. Sci. Rep. 2013, 3, 2639. [CrossRef] [PubMed]
Garneau, F.-X.; Harvey, C.; Simard, J.-L.; Apsimon, J.W.; Burnell, D.J.; Himmelman, J.H. The distribution of asterosaponins in various body components of the starfish Leptasterias polaris. Compar. Biochem. Physiol. Part B Compar. Biochem. 1989, 92, 411–416. [CrossRef]
Mackie, A.M.; Singh, H.T.; Owen, J.M. Studies on the distribution, biosynthesis and function of steroidal saponins in echinoderms. Compar. Biochem. Physiol. Part B Compar. Biochem. 1977, 56, 9–14. [CrossRef]
Voogt, P.A.; Huiskamp, R. Sex-dependence and seasonal variation of saponins in the gonads of the starfish Asterias rubens: Their relation to reproduction. Compar. Biochem. Physiol. Part A Physiol. 1979, 62, 1049–1055. [CrossRef]
Mayo, P.; Mackie, A.M. Studies of avoidance reactions in several species of Predatory British Seastars (Echinodermata: Asteroidea). Mar. Biol. 1976, 38, 41–49. [CrossRef]
Harvey, C.; Garneau, F.-X.; Himmelman, J.H. Chemodetection of the predatory seastar Leptasterias polaris by the whelk Buccinum undatum. Mar. Ecol. Prog. Ser. 1987, 40, 79–86. [CrossRef]
Mackie, A.M.; Lasker, R.; Grant, P.T. Avoidance reactions of a mollusc Buccinum undatum to saponin-like surface-active substances in extracts of the starfish Asterias rubens and Marthasterias glacialis. Compar. Biochem. Physiol. 1968, 26, 415–428. [CrossRef]
Kerr, R.G.; Chen, Z. In vivo and in vitro biosynthesis of saponins in sea cucumbers. J. Nat. Prod. 1995, 58, 172–176. [CrossRef] [PubMed]
Rohmer, M.; Knani, M.; Simonin, P.; Sutter, B.; Sahm, H. Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 1993, 295 Pt 2, 517–524. [CrossRef]
Boucher, Y.; Kamekura, M.; Doolittle, W.F. Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol. Microbiol. 2004, 52, 515–527. [CrossRef] [PubMed]
Volkman, J.K. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways. Org. Geochem. 2005, 36, 139–159. [CrossRef]
Hemmerlin, A.; Harwood, J.L.; Bach, T.J. A raison d’etre for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog. Lipid Res. 2012, 51, 95–148. [CrossRef]
Thimmappa, R.; Geisler, K.; Louveau, T.; O’Maille, P.; Osbourn, A. Triterpene biosynthesis in plants. Ann. Rev. Plant Biol. 2014, 65, 225–257. [CrossRef]
Santos, M.M.; Ruivo, R.; Lopes-Marques, M.; Torres, T.; De los Santos, C.; Castro, L.; Neuparth, T. Statins: An undesirable class of aquatic contaminants? Aquat. Toxicol. 2016, 174, 1–9. [CrossRef]
Goad, L.J.; Rubinstein, I.; Smith, A.G. The sterols of echinoderms. Proc. R. Soc. Lon. Ser. B Biol. Sci. 1972, 180, 223–246. [CrossRef]
Kanazawa, A.; Teshima, S.; Tomita, S. Sterol biosynthesis in some coelenterates and echinoderms. Nippon Suisan Gakkaishi 1974, 40, 1257–1260. [CrossRef]
Bose, U.; Wang, T.; Zhao, M.; Motti, C.A.; Hall, M.R.; Cummins, S.F. Multiomics analysis of the giant triton snail salivary gland, a crown-of-thorns starfish predator. Sci. Rep. 2017, 7, 6000. [CrossRef] [PubMed]
Liu, H.; Kong, X.; Chen, J.; Zhang, H. De novo sequencing and transcriptome analysis of Stichopus horrens to reveal genes related to biosynthesis of triterpenoids. Aquaculture 2018, 491, 358–367. [CrossRef]
Elyakov, G.B.; Kuznetsova, T.A.; Stonik, V.A.; Levin, V.S.; Albores, R. Glycosides of marine invertebrates. IV. A comparative study of the glycosides from Cuban sublittoral holothurians. Compar. Biochem. Physiol. Part B Compar. Biochem. 1975, 52, 413–417. [CrossRef]
Kelecom, A.; Daloze, D.; Tursch, B. Chemical studies of marine invertebrates—XXI: Six triterpene genins artifacts from thelothurins A and B, toxic saponins of the sea cucumber Thelonota ananas Jaeger (echinodermata). Biosynthesis of the thelothurins. Tetrahedron 1976, 32, 2353–2359. [CrossRef]
Cordeiro, M.L.; Djerassi, C. Biosynthetic studies of marine lipids. 25. Biosynthesis of.DELTA.9(11)- and.DELTA.7-sterols and saponins in sea cucumbers. J. Org. Chem. 1990, 55, 2806–2813. [CrossRef]
Cordeiro, N.L.; Kerr, R.G.; Djerassi, C. Biosynthetic studies of marine lipids 15. Conversion of parkeol (lanosta-9(11),24-dien-3β-ol) to 14α-methylcholest-9(11)-en-3β-ol in the sea cucumber Holothuria arenicola. Tetrahedron Lett. 1988, 29, 2159–2162. [CrossRef]
Voogt, P.A.; van Rheenen, J.W.A. On the origin of sterols in the seastar Asterias rubens. Compar. Biochem. Physiol. Part B Compar. Biochem. 1976, 54, 479–482. [CrossRef]
Makarieva, T.N.; Stonik, V.A.; Kapustina, I.I.; Boguslavsky, V.M.; Dmitrenoik, A.S.; Kalinin, V.I.; Cordeiro, M.L.; Djerassi, C. Biosynthetic studies of marine lipids. 42. Biosynthesis of steroid and triterpenoid metabolites in the sea cucumber Eupentacta fraudatrix. Steroids 1993, 58, 508–517. [CrossRef]
Stonik, V.A.; Kalinin, V.I.; Avilov, S.A. Toxins from sea cucumbers (holothuroids): Chemical structures, properties, taxonomic distribution, biosynthesis and evolution. J. Nat. Toxins 1999, 8, 235–248.
Marijanovic, Z.; Laubner, D.; Möller, G.; Adamski, J.; Gege, C.; Husen, B.; Breitling, R. Closing the Gap: Identification of Human 3-Ketosteroid Reductase, the Last Unknown Enzyme of Mammalian Cholesterol Biosynthesis. Mol. Endocrinol. 2003, 17, 1715–1725. [CrossRef] [PubMed]
Abe, I. Enzymatic synthesis of cyclic triterpenes. Nat. Prod. Rep. 2007, 24, 1311–1331. [CrossRef] [PubMed]
Sheikh, Y.M.; Djerassi, C. Bioconversion of lanosterol into holotoxingonin, a triterpenoid from the sea cucumber Stichopus californicus. J. Chem. Soc. Chem. Commun. 1976, 1057–1058. [CrossRef]
Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjashchenko, P.V.; Dmitrenok, P.S.; Kalinin, V.I.; Stonik, V.A. 3β-O-Glycosylated 16β-acetoxy-9β-H-lanosta-7,24-diene-3β,18,20β-triol, an intermediate metabolite from the sea cucumber Eupentacta fraudatrix and its biosynthetic significance. Biochem. Syst. Ecol. 2012, 44, 53–60. [CrossRef]
Ito, R.; Mori, K.; Hashimoto, I.; Nakano, C.; Sato, T.; Hoshino, T. Triterpene cyclases from Oryza sativa L.: Cycloartenol, parkeol and achilleol B synthases. Org. Lett. 2011, 13, 2678–2681. [CrossRef]
Svetashev, V.I.; Levin, V.S.; Cham Ngok, L.; Do Tuet, N. Lipid and fatty acid composition of holothurians from tropical and temperate waters. Compar. Biochem. Physiol. Part B Compar. Biochem. 1991, 98, 489–494. [CrossRef]
Voogt, P. Biosynthesis and composition of 3β-sterols in the ophiuroids Ophiura albida and Ophioderma longicauda. Compar. Biochem. Physiol. Part B Compar. Biochem. 1973, 45, 593–601. [CrossRef]
Drazen, J.C.; Phleger, C.F.; Guest, M.A.; Nichols, P.D. Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroids from the North-East Pacific Ocean: Food web implications. Compar. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 151, 79–87. [CrossRef]
Zhang, X.; Sun, L.; Yuan, J.; Sun, Y.; Gao, Y.; Zhang, L.; Li, S.; Dai, H.; Hamel, J.F.; Liu, C.; et al. The sea cucumber genome provides insights into morphological evolution and visceral regeneration. PLoS Biol. 2017, 15, e2003790. [CrossRef]