[en] Cryptic phylogeographic diversifications provide unique models to examine the role of phylogenetic divergence on the evolution of reproductive isolation, without extrinsic factors such as ecological and behavioural differentiation. Yet, to date very few comparative studies have been attempted within such radiations. Here, we characterize a new speciation continuum in a group of widespread Eurasian amphibians, the Pelobates spadefoot toads, by conducting multilocus (restriction site associated DNA sequencing and mitochondrial DNA) phylogenetic, phylogeographic and hybrid zone analyses. Within the P. syriacus complex, we discovered species-level cryptic divergences (>5 million years ago [My]) between populations distributed in the Near-East (hereafter P. syriacus sensu stricto [s.s.]) and southeastern Europe (hereafter P. balcanicus), each featuring deep intraspecific lineages. Altogether, we could scale hybridizability to divergence time along six different stages, spanning from sympatry without gene flow (P. fuscus and P. balcanicus, >10 My), parapatry with highly restricted hybridization (P. balcanicus and P. syriacus s.s., >5 My), narrow hybrid zones (~15 km) consistent with partial reproductive isolation (P. fuscus and P. vespertinus, ~3 My), to extensive admixture between Pleistocene and refugial lineages (≤2 My). This full spectrum empirically supports a gradual build up of reproductive barriers through time, reversible up until a threshold that we estimate at ~3 My. Hence, cryptic phylogeographic lineages may fade away or become reproductively isolated species simply depending on the time they persist in allopatry, and without definite ecomorphological divergence.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Dufresnes, Christophe; University of Lausanne & Hintermann & Weber
Strachinis, Ilias; Aristotle University of Thessaloniki
Suriadna, Nataliia; Melitopol Insitute of Ecology and Social Technologies of University “Ukraine”
Mykytynets, Galyna; Pryazovsky National Nature Park
Cogălniceanu, Dan; University Ovidius Constanţa
Székely, Paul; Universidad Técnica Particular de Loja
Vukov, Tanja; Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”
Arntzen, Jan W.; Naturalis Biodiversity Center
Wielstra, Ben; Leiden University
Lymberakis, Petros; University of Crete
Geffen, Eli; Tel Aviv University
Gafny, Sarig; Ruppin Academic Center
Kumlutaş, Yusuf; Dokuz Eylül University
Ilgaz, Çetin; Dokuz Eylül University
Candan, Kamil; Dokuz Eylül University
Mizsei, Edvárd; Hungarian Academy of Sciences
Szabolcs, Márton; Hungarian Academy of Sciences
Kolenda, Krzysztof; University of Wrocław
Smirnov, Nazar; Chernivtsi Regional Museum
Géniez, Philippe; University Paul Valéry Montpellier 3
Lukanov, Simeon; Bulgarian Academy of Sciences
Crochet, Pierre-André; University Paul Valéry Montpellier 3
Dubey, Sylvain; University of Lausanne & Hintermann & Weber SA,
Perrin, Nicolas; University of Lausanne
Litvinchuk, Spartak N.; Russian Academy of Sciences & Dagestan State University
Denoël, Mathieu ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens
F.R.S.-FNRS - Fonds de la Recherche Scientifique WBI - Wallonie-Bruxelles International CCCDI‐UEFISCDI Serbian Ministry of Education, Science and Technological Development SNSF - Swiss National Science Foundation
Arntzen, J. W. (2003). Triturus cristatus superspezies - Kammolch Arntenkreis. In K. Grossenbacher & B. Thiesmeier (Eds.), Handbuch der Reptilien und Amphibien Europas. Schwanzlurche IIA (pp. 421–514). Wiebelsheim: Aula-Verlag.
Arntzen, J. W., de Vries, W., Canestrelli, D., & Martínez-Solano, I. (2017). Hybrid zone formation and contrasting outcomes of secondary contact over transects in common toads. Molecular Ecology, 26, 5663–5675. https://doi.org/10.1111/mec.14273
Arntzen, J. W., & Wallis, G. P. (1991). Restricted gene flow in a moving hybrid zone of the newts Triturus cristatus and T. marmoratus in western France. Evolution, 45, 805–826. https://doi.org/10.1111/j.1558-5646
Arntzen, J. W., Wielstra, B., & Wallis, G. P. (2014). The modality of nine Triturus newt hybrid zones assessed with nuclear, mitochondrial and morphological data. Biological Journal of the Linnean Society, 113, 604–622. https://doi.org/10.1111/bij.12358
Avise, J. (2000). Phylogeography: The history and formation of species. Cambridge, MA: Harvard University Press.
Avise, J., Walker, D., & Johns, G. (1998). Speciation durations and Pleistocene effects on vertebrate phylogeography. Proceedings of the Royal Society B: Biological Sciences, 265, 1707–1712. https://doi.org/10.1098/rspb.1998.0492
Barton, N., & Gale, K. S. (1993). Genetic analysis of hybrid zones. In R. Harrison (Ed.), Hybrid zones and the evolutionary process (pp. 13–45). New York: Oxford University Press.
Barton, N. H., & Hewitt, G. M. (1985). Analysis of hybrid zones. Annual Review of Ecology and Systematics, 16, 113–148. https://doi.org/10.1146/annurev.es.16.110185.000553
Beysard, N., & Heckel, G. (2014). Structure and dynamics of hybrid zones at different stages of speciation in the common vole (Microtus arvalis). Molecular Ecology, 23, 673–687. https://doi.org/10.1111/mec.12613
Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., … Das, I. (2006). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148–155. https://doi.org/10.1016/j.tree.2006.11.004
Borkin, L. J., Litvinchuk, S. N., Rosanov, M., Khalturin, M. D., Lada, G. A., Borissovsky, A. G., … Ruchin, A. (2003). New data on the distribution of two cryptic forms of the common spadefoot toads (Pelobates fuscus) in eastern Europe. Russian Journal of Herpetology, 10, 115–122.
Bouckaert, R. R., & Drummond, A. J. (2017). bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology, 17, 42. https://doi.org/10.1186/s12862-017-0890-6
Bouckaert, R. R., & Heled, J. (2014). DensiTree 2: Seeing trees through the forest. Retrieved from https://doi.org/10.1101/012401
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., … Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian Evolutionary Analysis. PLoS Computational Biology, 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537
Brelsford, A., Dufresnes, C., & Perrin, N. (2016). High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex. Heredity, 116, 177–181. https://doi.org/10.1038/hdy.2015.83
Catchen, J., Hohenlohe, P., Bassham, S., Amores, A., & Cresko, W. (2013). Stacks: An analysis tool set for population genomics. Molecular Ecology, 22, 3124–3140. https://doi.org/10.1111/mec.12354
Coates, D. J., Byrne, M., & Moritz, C. (2018). Genetic diversity and conservation units: Dealing with the speciation-population continuum in the age of genomics. Frontiers in Ecology & Evolution, 6, 165. https://doi.org/10.3389/fevo.2018.00165
Cogălniceanu, D., Roşioru, D., Székely, P., Székely, D., Buhaciuc, E., Stănescu, F., & Miaud, C. (2014). Age and body size in populations of two syntopic spadefoot toads (genus Pelobates) at the limit of their ranges. Journal of Herpetology, 48, 537–545. https://doi.org/10.1670/13-101
Crottini, A., Andreone, F., Kosuch, J., Borkin, L., Litvinchuk, S. N., Eggert, C., & Veith, M. (2007). Fossorial but widespread: The phylogeography of the common spadefoot toad (Pelobates fuscus), and the role of the Po Valley as a major source of genetic variability. Molecular Ecology, 16, 2734–2754. https://doi.org/10.1111/j.1365-294X.2007.03274.x
Croucher, P. J., Jones, R. M., Searle, J. B., & Oxford, G. S. (2007). Contrasting patterns of hybridization in large house spiders (Tegenaria atrica group, Agelenidae). Evolution, 61, 1622–1640. https://doi.org/10.1111/j.1558-5646.2007.00146.x
Derryberry, E. P., Derryberry, G. E., Maley, J. M., & Brumfield, R. T. (2014). HZAR: Hybrid zone analysis using an R software package. Molecular Ecology Resources, 14, 652–663. https://doi.org/10.1111/1755-0998.12209
Díaz-Rodríguez, J., Gehara, M., Márquez, R., Vences, M., Gonçalves, H., Sequeira, F., … Tejedo, M. (2017). Integration of molecular, bioacoustical and morphological data reveals two new cryptic species of Pelodytes (Anura, Pelodytidae) from the Iberian Peninsula. Zootaxa, 4243, 3257–41. https://doi.org/10.11646/zootaxa.4243.1.1
Dufresnes, C. (2019). Phylogeography and hybrid zones of Palearctic amphibians. NCBI SRA. Retrieved from https://www.ncbi.nlm.nih.gov/bioproject/542138
Dufresnes, C., Bonato, L., Novarini, N., Betto-Colliard, C., Perrin, N., & Stöck, M. (2014). Inferring the degree of incipient speciation in secondary contact zones of closely related lineages of Palearctic green toads (Bufo viridis subgroup). Heredity, 113, 9–20. https://doi.org/10.1038/hdy.2014.26
Dufresnes, C., Brelsford, A., Crnobrnja-Isailovic, J., Tzankov, N., Lymberakis, P., & Perrin, N. (2015). Timeframe of speciation inferred from secondary contact zones in the European tree frog radiation (Hyla arborea group). BMC Evolutionary Biology, 15, 155. https://doi.org/10.1186/s12862-015-0385-2
Dufresnes, C., Mazepa, G., Rodrigues, N., Brelsford, A., Litvinchuk, S. N., Sermier, R., … Jeffries, D. L. (2018). Genomic evidence for cryptic speciation in tree frogs from the Apennine Peninsula, with description of Hyla perrini sp. nov. Frontiers in Ecology & Evolution, 6, 144. https://doi.org/10.3389/fevo.2018.00144
Dufresnes, C., Strachinis, I., Tzoras, E., Litvinchuk, S. N., & Denoël, M. (2019). Call a spade a spade: taxonomy and distribution of Pelobates, with description of a new Balkan endemic. ZooKeys, 859,131–158. https://doi.org/10.3897/zookeys.859.33634.
Dufresnes, C., Wassef, J., Ghali, K., Brelsford, A., Stöck, M., Lymberakis, P., … Perrin, N. (2013). Conservation phylogeography: Does historical diversity contribute to regional vulnerability in European tree frogs (Hyla arborea)? Molecular Ecology, 22, 5669–5684. https://doi.org/10.1111/mec.12513
Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7
Ehl, S., Vences, M., & Veith, M. (2019). Reconstructing evolution at the community level: A case study on Mediterranean amphibians. Molecular Phylogenetics & Evolution, 134, 211–225. https://doi.org/10.1016/j.ympev.2019.02.013
Garrick, R. C., Banusiewicz, J. D., Burgess, S., Hyseni, C., & Symula, R. E. (2019). Extending phylogeography to account for lineage fusion. Journal of Biogeography, 46, 268–278. https://doi.org/10.1111/jbi.13503
Gavrilets, S. (2004). Fitness landscapes and the origin of species. Cambridge, MA: Princeton University Press.
Gourbiere, S., & Mallet, J. (2009). Are species real? The shape of the species boundary with exponential failure, reinforcement and the ‘missing snowball’. Evolution, 64, 3257–24. https://doi.org/10.1111/j.1558-5646.2009.00844.x
Heled, J. (2010). Extended Bayesian Skyline Plots tutorial. Retrieved from tutorial.east.bio.ed.ac.uk/Tutorials
Heled, J. (2015). Extended Bayesian Skyline Plot tutorial for BEAST 2. Retrieved from http://evomicsorg.wpengine.netdna-cdn.com/wp-content/uploads/2015/11/ebsp2-tut1.pdf
Heled, J., & Drummond, A. J. (2008). Bayesian inference of population size history from multiple loci. BMC Evolutionary Biology, 8, 289. https://doi.org/10.1186/1471-2148-8-289
Hendry, A. P., Bolnick, D. I., Berner, D., & Peichel, C. L. (2009). Along the speciation continuum in sticklebacks. Journal of Fish Biology, 75, 2000–2036. https://doi.org/10.1111/j.1095-8649.2009.02419.x
Iosif, R., Papes, M., Samoila, C., & Cogălniceanu, D. (2014). Climate-induced shifts in the niche similarity of two related spadefoot toads (genus Pelobates). Organisms Diversity & Evolution, 14, 397–408. https://doi.org/10.1007/s13127-014-0181-7
Jay, P., Whibley, A., Frézal, L., Rodríguez de Cara, M. Á., Nowell, R. W., Mallet, J., … Joron, M. (2018). Supergene evolution triggered by the introgression of a chromosomal inversion. Current Biology, 28, 3257–7. https://doi.org/10.1016/j.cub.2018.04.072
Jombart, T. (2008). adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129
Litvinchuk, S. N., Crottini, A., Federici, S., De Pous, P., Donaire, D., Andreone, F., … Rosanov, J. M. (2013). Phylogeographic patterns of genetic diversity in the common spadefoot toad, Pelobates fuscus (Anura: Pelobatidae), reveals evolutionary history, postglacial range expansion and secondary contact. Organisms Diversity & Evolution, 13, 433–451. https://doi.org/10.1007/s13127-013-0127-5
Mallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution, 10, 294–299. https://doi.org/10.1016/0169-5347(95)90031-4
Mazanaeva, L. F., & Askenderov, A. D. (2007). New data on the distribution of eastern spadefoot, Pelobates syriacus Boettger, 1889, and common spadefoot, Pelobates fuscus, Laurenti, 1768, in Dagestan (the North Caucasus). Russian Journal of Herpetology, 14, 161–166.
Mendelson, T., Inouye, B., & Rausher, M. (2004). Quantifying patterns in the evolution of reproductive isolation. Evolution, 58, 1424–1433. https://doi.org/10.1111/j.0014-3820.2004.tb01724.x
Mérot, C., Salazar, C., Merrill, R. M., Jiggins, C. D., & Joron, M. (2017). What shapes the speciation continuum of reproductive isolation? Lessons from Heliconius butterflies. Proceedings of the Royal Society B: Biological Sciences, 284, 20170335. https://doi.org/10.1098/rspb.2017.0335
Morgan-Richards, M., & Wallis, G. (2003). A comparison of five hybrid zones of the weta Hemideina thoracica (Orthoptera: Anostomatidae): Degree of cytogenetic differentiation fails to predict zone width. Evolution, 57, 849–861. https://doi.org/10.1111/j.0014-3820.2003.tb00296.x
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. https://doi.org/10.1038/35002501
Nosil, P., Feder, J., Flaxman, S. M., & Gompert, Z. (2017). Tipping points in the dynamics of speciation. Nature Ecology and Evolution, 1, 0001. https://doi.org/10.1038/s41559-016-0001
Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C., & Costa, G. C. (2017). AmphiBIO, a global database for amphibian ecological traits. Scientific Data, 4, 170123. https://doi.org/10.1038/sdata.2017.123
Orr, H. (1995). The population genetics of speciation: The evolution of hybrid incompatibilities. Genetics, 139, 1805–1813.
Pabijan, M., Zielinski, P., Dudek, K., Stuglik, M., & Babik, W. (2017). Isolation and gene flow in a speciation continuum in newts. Molecular Phylogenetics & Evolution, 116, 3257–12. https://doi.org/10.1016/j.ympev.2017.08.003
Padial, J., Miralles, A., De la Riva, I., & Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology, 7, 16. https://doi.org/10.1186/1742-9994-7-16
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.
Roux, C., Fraïsse, C., Romiguier, J., Anciaux, Y., Galtier, N., & Bierne, N. (2016). Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS Biology, 14, e20000234. https://doi.org/10.1371/journal.pbio.2000234
Seehausen, O. (2006). Conservation: Losing biodiversity by reverse speciation. Current Biology, 16, 334–347. https://doi.org/10.1016/j.cub.2006.03.080
Servedio, M. R., van Doorn, G. S., Kopp, M., Frame, A. M., & Nosil, P. (2011). Magic traits in speciation: “magic” but not rare? Trends in Ecology & Evolution, 26, 389–397. https://doi.org/10.1016/j.tree.2011.04.005
Singhal, S., & Moritz, C. (2013). Reproductive isolation between phylogeographic lineages scales with divergence. Proceedings of the Royal Society B: Biological Sciences, 280, 20132246. https://doi.org/10.1098/rspb.2013.2246
Smadja, C. M., & Butlin, R. K. (2011). A framework for comparing processes of speciation in the presence of gene flow. Molecular Ecology, 20, 5123–5140. https://doi.org/10.1111/j.1365-294X.2011.05350.x
Stöck, M., Dufresnes, C., Litvinchuk, S. N., Lymberakis, P., Biollay, S., Berroneau, M., … Perrin, N. (2012). Cryptic diversity among Western Palearctic tree frogs: Postglacial range expansions, range limits, and secondary contacts of three European tree frog lineages (Hyla arborea group). Molecular Phylogenetics & Evolution, 65, 3257–9. https://doi.org/10.1016/j.ympev.2012.05.014
Stoffel, C., Dufresnes, C., Okello, J. B., Noirard, C., Joly, P., Nyakaana, S., & …Fumagalli, L., (2015). Genetic consequences of population expansions and contractions in the common hippopotamus (Hippopotamus amphibius) since the Late Pleistocene. Molecular Ecology, 24, 2507–2520. https://doi.org/10.1111/mec.13179
Suriadna, N. N., Mikitinets, G. I., Rozanov, Yu. M., & Litvinchuk, S. N. (2016). Distribution, morphological variability and peculiarities of biology of spadefoot toads (Amphibia, Anura, Pelobatidae) in the south of Ukraine. Proceedings of the Zoological Museum of Kiïv, 47, 80–87.
Suryadnaya, N. N. (2014). Comparative analysis of karyotypes of two cryptic species of pelobatid frogs (Amphibia, Anura) of Ukraine. Vestnik Zoologii, 48, 511–520. https://doi.org/10.2478/vzoo-2014-0061
Szymura, J. M., & Barton, N. H. (1991). The genetic structure of the hybrid zone between the fire-bellied toads Bombina bombina and B. variegata: Comparisons between transects and between loci. Evolution, 45, 237–261. https://doi.org/10.1111/j.1558-5646.1991.tb04400.x
Trochet, A., Moulherat, S., Calvez, O., Stevens, V. M., Clobert, J., & Schmeller, D. S. (2014). A database of life-history traits of European amphibians. Biodiversity Data Journal, 2, e4123. https://doi.org/10.3897/BDJ.2.e4123
Veith, M., Fromhage, L., Kosuch, J., & Vences, M. (2006). Historical biogeography of Western Palaearctic pelobatid and pelodytid frogs: A molecular phylogenetic perspective. Contribution to Zoology, 75, 109–120. https://doi.org/10.1163/18759866-0750304001
Wielstra, B., Burke, T., Butlin, R. K., & Arntzen, J. W. (2017). A signature of dynamic biogeography: Enclaves indicate past species replacement. Proceedings of the Royal Society B, Biological Sciences, 284, 20172014. https://doi.org/10.1098/rspb.2017.2014
Wielstra, B., Burke, T., Butlin, R. K., Avcı, A., Üzüm, N., Bozkurt, E., … Arntzen, J. W. (2017). A genomic footprint of hybrid zone movement in crested newts. Evolution Letters, 1, 93–101. https://doi.org/10.1002/evl3.9
Wielstra, B., McCartney-Meslstad, E., Arntzen, J. W., Butlin, R. K., & Shaffer, H. B. (2019). Phylogenomics of the adaptive radiation of Triturus newts supports gradual ecological niche expansion towards an incrementally aquatic lifestyle. Molecular Phylogenetics & Evolution, 133, 120–127. https://doi.org/10.1016/j.ympev.2018.12.032