This is an author-created, un-copyedited version of an article published in Superconductor Science and Technology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it.
All documents in ORBi are protected by a user license.
GdBCO superconducting tube; Magnetic shielding; buffer aided TSIG method
Abstract :
[en] Melt-textured (RE)Ba2Cu3O7 superconductors (where RE is a rare earth element like Y, Gd or Dy) have a significant potential for passive magnetic shielding. Their critical current density Jc, however, is not uniform throughout the sample and this fact needs to be taken account to design a large magnetic shield made of these materials. In this work, magnetic shielding properties have been investigated at 77 K in an axial magnetic field for short GdBCO tubes fabricated by the top-seeded infiltration and growth (TSIG). The tubes, having ~ 10 mm thick walls, were studied with or without caps made of the same material. First, the shielding factor measured at several positions along the axis of the open tube was used to assess the non-uniformity of the shielding performance along the z axis. Second, four different configurations were brought when closing a tube with a disk, and their shielding performances were measured and compared. Third, we investigated the magnetic shielding efficiency for the tube closed with caps of different geometrical characteristics. The thickness of the cap used to close one side of the tube was shown to be an important parameter; experimental results showed that the same efficiency of a given cap could be obtained by stacking up two thinner caps with the same total height. Finally, the shielding behaviour of the open tube was modelled in order to investigate the flux penetration and to analyse the possible distribution of the critical current density Jc in the non-uniform GdBCO tube. The field dependence of the shielding factors measured at five elevations along the axis of the tube could be reproduced qualitatively by considering the GdBCO tube made of 3 layers, each of them with a constant Jc. This gives evidence that a simple model ignoring the field dependence of the critical current density can be used to reproduce the experimental magnetic shielding data. The model was also used to show the field penetration into the tube walls. These results are useful for getting better understanding of the properties of bulk superconductors synthesized by the TSIG process and to identify, in a non-destructive manner, which parts of the samples could be improved to obtain a good shielding performance.
Research Center/Unit :
SUPRATECS - Services Universitaires pour la Recherche et les Applications Technologiques de Matériaux Électro-Céramiques, Composites, Supraconducteurs - ULiège
Yang, Pengtao; Shaanxi Normal University, Xi’an, 710062 Shaanxi, China > College of Physics and Information Technology
Fagnard, Jean-François ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Vanderbemden, Philippe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Capteurs et systèmes de mesures électriques
Yang, Wanmin; Shaanxi Normal University, Xi’an, 710062 Shaanxi, China > College of Physics and Information Technology
Language :
English
Title :
Magnetic shielding of short thick GdBCO tube fabricated by the buffer aided TSIG method
Publication date :
2019
Journal title :
Superconductor Science and Technology
ISSN :
0953-2048
eISSN :
1361-6668
Publisher :
Institute of Physics Publishing, Bristol, United Kingdom
Volume :
32
Pages :
115015
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FWB - Fédération Wallonie-Bruxelles National Natural Science Foundation in China (No. 51572164, 51342001) Keygrant Project of the Chinese Ministry of Education (No. 311033) Research Fund for the Doctoral Program of Higher Education of China (No. 20120202110003) Key Program of Science and Technology Innovation Team in Shaanxi Province (grant No. 2014KTC-18) Fundamental Research Funds for the Central Universities (Nos. 2017CBZ001, GK201505028)
Claycomb J R and Miller J H Jr 1999 Rev. Sci. Instrum 70 4562-8
Pavese F 1998 Magnetic Shielding, in: Handbook of Applied Superconductivity (Bristol: Institute of Physics Publishing)
Denis S, Dusoulier L, Dirickx M, Vanderbemden P, Cloots R, Ausloos M and Vanderheyden B 2007 Supercond. Sci. Technol. 20 192-201
Jiles D 2015 Introduction to Magnetism and Magnetic Materials, Third Edition (Boca Raton London New York: CRC Press, Taylor and Francis)
Fagnard J F, Elschner S, Bock J, Dirickx M, Vanderheyden B and Vanderbemden P 2010 Supercond. Sci. Technol. 23 095012
Rabbers J J, Oomen M P, Bassani E, Ripamonti G and Giunchi G 2010 Supercond. Sci. Technol. 23 125003
Gozzelino L, Gerbaldo R, Ghigo G, Laviano F, Agostino A, Bonometti E, Chiampi M, Manzin A and Zilberti L 2013 IEEE Trans. Appl. Supercond. 23 8201305
Gozzelino L, Gerbaldo R, Ghigo G, Laviano F and Truccato M 2016 J. Supercond. Nov. Magn. 30 749-56
Wéra L, Fagnard J-F, Namburi D K, Shi Y, Vanderheyden B and Vanderbemden P 2017 IEEE Trans. Appl. Supercond. 27 6800305
Bergen A, van Weers H J, Bruineman C, Dhallé M M J, Krooshoop H J G, Brake H J M T, Ravensberg K, Jackson B D and Wafelbakker C K 2016 Rev. Sci. Instrum. 87 105109
Arpaia P, Ballarino A, Giunchi G and Montenero G 2014 J. Instrum. 9 P04020-P
Kvitkovic J, Patel S, Zhang M, Zhang Z, Peetz J, Marney A and Pamidi S 2018 IEEE Trans. Appl. Supercond. 28 9001705
Capobianco-Hogan K G, et al 2018 Nucl. Instrum. Methods Phys. Res. A 877 149-56
Statera M, Balossino I, Barion L, Ciullo G, Contalbrigo M, Lenisa P, Lowry M M, Sandorfi A M and Tagliente G 2018 Nucl. Instrum. Methods Phys. Res. A 882 17-21
Barna D 2017 Phys. Rev. Accel. Beams 20 041002
Kvitkovic J, Davis D, Zhang M and Pamidi S 2015 IEEE Trans. Appl. Supercond. 25 8800304
Tomkow Ł, Ciszek M and Chorowski M 2015 J. Appl. Phys. 117 043901
Bhattacharya D, Roy S N, Basu R N, Sharma A D and Maiti H S 1993 Mater. Lett. 16 337-41
Durrell J H, Ainslie M D, Zhou D, Vanderbemden P, Bradshaw T, Speller S, Filipenko M and Cardwell D A 2018 Supercond. Sci. Technol. 31 103501
Sasaki T, Tanaka M, Morita M, Miyamoto K and Hashimoto M 1992 Japan. J. Appl. Phys. 31 1026-32
Fang H, Claycomb J R, Zhou Y X, Putman P T, Padmanabhan S, Miller J H, Ravi-Chandar K and Salama K 2003 IEEE Trans. Appl. Supercond. 13 3103-5
Withnell T D, Babu N H, Majoros M, Reddy E S, Astill D M, Shi Y, Cardwell D A, Campbell A M, Kerley N and Zhang S 2005 IEEE Trans. Appl. Supercond. 15 3125-8
Scruggs S J, Putman P T, Fang H, Alessandrini M and Salama K 2006 Physica C 445-448 312-6
Shi Y, Dennis A R, Xu Z, Campbell A M, Hari Babu N and Cardwell D A 2010 Supercond. Sci. Technol. 23 045014
Tomita M, Fukumoto Y, Suzuki K, Ishihara A and Muralidhar M 2011 J. Appl. Phys. 109 023912
Nariki S, Teshima H and Morita M 2016 Supercond. Sci. Technol. 29 034002
Zhang Z Y, Matsumoto S, Teranishi R and Kiyoshi T 2012 Phys. Proc. 27 180-3
Yang P T, Yang W M and Chen J L 2017 Supercond. Sci. Technol. 30 085003
Denis S, Dirickx M, Vanderbemden P, Ausloos M and Vanderheyden B 2007 Supercond. Sci. Technol. 20 418-27
Wéra L, Fagnard J-F, Hogan K, Vanderheyden B, Namburi D K, Shi Y, Cardwell D A and Vanderbemden P 2019 IEEE Trans. Appl. Supercond. 29 6801109
Dewhurst C D, Lo W, Shi Y H and Cardwell D A 1998 Mater. Sci. Eng. B 53 169-73
Delamare M P, Walter H, Bringmann B, Leenders A and Freyhardt H C 1999 Physica C 323 107-14
Diko P, Todt V R, Miller D J and Goretta K C 1997 Physica C 278 192-200
Diko P 2000 Supercond. Sci. Technol. 13 1202-13
Oka T, Ota H, Shimoda T, Ogawa J, Fukui S, Sato T, Yokoyama K, Murakami A and Langer M 2015 IEEE Trans. Appl. Supercond. 25 6800904
Fujishiro H, Naito T, Furuta D, Arayashiki T, Yanagi Y and Itoh Y 2011 Supercond. Sci. Technol. 24 105003
Zhai W, Shi Y H, Durrell J H, Dennis A R, Rutter N A, Troughton S C, Speller S C and Cardwell D A 2013 Supercond. Sci. Technol. 26 125021
Li G-Z and Yang W-M 2010 J. Am. Ceram. Soc. 93 4033-5
Li G-Z, Li D-J, Deng X-Y, Deng J-H and Yang W-M 2013 Cryst. Growth Des. 13 1246-51
Yang W M, Chen L P and Wang X J 2016 Supercond. Sci. Technol. 29 024004
Jeong I K, Kim D Y, Park Y K, Lee K W and Park J C 1991 Physica C 185-189 2393-4
Fang H, Zhou Y X, Ravi-Chandar K and Salama K 2004 Supercond. Sci. Technol. 17 269-73
Iida K, Hari Babu N and Cardwell D A 2007 Supercond. Sci. Technol. 20 1065-70
Umakoshi S, Ikeda Y, Wongsatanawarid A, Kim C J and Murakami M 2011 Physica C 471 843-5
Namburi D K, Shi Y, Palmer K G, Dennis A R, Durrell J H and Cardwell D A 2016 J. Eur. Ceram. Soc. 36 615-24
Namburi D K, Shi Y, Palmer K G, Dennis A R, Durrell J H and Cardwell D A 2016 Supercond. Sci. Technol. 29 034007
Pavan Kumar Naik S, Muralidhar M, Jirsa M and Murakami M 2017 J. Appl. Phys. 122 193902
Namburi D K, Durrell J H, Jaroszynski J, Shi Y, Ainslie M, Huang K, Dennis A R, Hellstrom E E and Cardwell D A 2018 Supercond. Sci. Technol. 31 125004
Devendra Kumar N, Shi Y, Zhai W, Dennis A R, Durrell J H and Cardwell D A 2015 Cryst. Growth Des. 15 1472-80
Shi Y H, Dennis A R and Cardwell D A 2015 Supercond. Sci. Technol. 28 035014
Yang P, Yang W, Zhang L and Chen L 2018 Supercond. Sci. Technol. 31 085005
Chen S L, Yang W M, Li J W, Yuan X C, Ma J and Wang M 2014 Physica C 496 39-43
Grilli F, Stavrev S, Floch Y L, Costa-Bouzo M, Vinot E, Klutsch I, Meunier G, Tixador P and Dutoit B 2005 IEEE Trans. Appl. Supercond. 15 17-25
Ruiz-Alonso D, Coombs T and Campbell A M 2004 Supercond. Sci. Technol. 17 S305
Lousberg G P, Ausloos M, Geuzaine C, Dular P, Vanderbemden P and Vanderheyden B 2009 Supercond. Sci. Technol. 22 055005
GetDP: A General Environment for the Treatment of Discrete Problems http://hdl.handle.net/2268/22946
Ainslie M D and Fujishiro H 2015 Supercond. Sci. Technol. 28 053002
Ainslie M D, Fujishiro H, Ujiie T, Zou J, Dennis A R, Shi Y H and Cardwell D A 2014 Supercond. Sci. Technol. 27 065008
Ainslie M D and Fujishiro H 2017 Supercond. Sci. Technol. 30 039501
Navau C, Sanchez A, Pardo E, Chen D X, Bartolomé E, Granados X, Puig T and Obradors X 2005 Phys. Rev. B 71 214507
Cardwell D A 1998 Mater. Sci. Eng. B 53 1-10
Congreve J V J, Shi Y, Dennis A R, Durrell J H and Cardwell D A 2017 Supercond. Sci. Technol. 30 015017
Zou J, Ainslie M D, Hu D, Zhai W, Devendra Kumar N, Durrell J H, Shi Y H and Cardwell D A 2015 Supercond. Sci. Technol. 28 035016
Trillaud F, Berger K, Douine B and Lévêque J 2016 IEEE Trans. Appl. Supercond. 26 6800305