[en] We aimed to estimate transgenerational epigenetic variance for body weight usinggenealogical and phenotypic information in meat quails. Animals were individu-ally weighted from 1 week after hatching, with weight records at 7, 14, 21, 28,35 and 42 days of age (BW7, BW14, BW21, BW28, BW35 and BW42, respec-tively). Single-trait genetic analyses were performed using mixed models withrandom epigenetic effects. Variance components were estimated by the restrictedmaximum likelihood method. A grid search for values of autorecursive parameter(k) ranging from 0 to 0.5 was used in the variance component estimation. Thisparameter is directly related to the reset coefficient (m) and the epigenetic coeffi-cient of transmissibility (1-m). The epigenetic effect was only significant for BW7.Direct heritability estimates for body weight ranged in magnitude (from 0.15 to0.26), with the highest estimate for BW7. Epigenetic heritability was 0.10 forBW7, and close to zero for the other body weights. The inclusion of the epige-netic effect in the model helped to explain the residual and non-Mendelian vari-ability of initial body weight in meat quails.
Disciplines :
Animal production & animal husbandry
Author, co-author :
De Paiva, José Teodoro ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions animales et nutrition
Vilela de Resende, Marcos Deon
Tassinari Resende, Rafael
Rojas de Oliveira, Hinayah
Texeira Silva, Hugo
Caetano, Giovani da Costa
Sávio Lopes, Paulo
Fonseca e Silva, Fabyano
Language :
English
Title :
Transgenerational epigenetic variance for body weight in meatquails
An, S., Liu, G., Guo, Y., & Sun, Q. (2012). Effects of maternal and posthatch dietary oils and vitamin E on antioxidant capability and muscle quality of the progeny broilers. The Journal of Poultry Science, 49, 191–195. https://doi.org/10.2141/jpsa.011108
Berghof, T. V. L., Parmentier, H. K., & Lammers, A. (2013). Transgenerational epigenetic effects on innate immunity in broilers: An underestimated field to be explored? Poultry Science, 92(11), 2904–2913. https://doi.org/10.3382/ps.2013-03177
Callini, F., & Sirri, F. (2007). Breeder nutrition and offspring performance. Brazilian Journal of Poultry Science, 9(2), 77–83. https://doi.org/10.1590/S1516-635X2007000200001
Feeney, A., Nilsson, E., & Skinner, M. K. (2014). Epigenetics and transgenerational inheritance in domesticated farm animals. Journal of Animal Science and Biotechnology, 5(1), 48. https://doi.org/10.1186/2049-1891-5-48
Ferket, P. R. (2012). Embryo epigenomic response to breeder management and nutrition. In: Proceedings, XXIV World′s Poultry Congress, Salvador, Brasil, August 2012.
Frésard, L., Morisson, M., Brun, J. M., Collin, A., Pain, B., Minvielle, F., & Pitel, F. (2013). Epigenetics and phenotypic variability: Some interesting insights from birds. Genetics Selection Evolution, 45(1), 16. https://doi.org/10.1186/1297-9686-45-16
Gao, M. M., Zhao, L., Zhang, J. L., Li, L. J., Yu, L. L., Lv, P. A., … Zhou, G. H. (2017). Effects of in ovo feeding of l-arginine on the development of lymphoid organs and small intestinal immune barrier function in post hatch broilers. Animal Feed Science and Technology, 225, 8–19. https://doi.org/10.1016/j.anifeedsci.2017.01.004
González-Recio, O. (2012). Epigenetics: A new challenge in the post-genomic era of livestock. Frontiers in Genetics, 2, 106. https://doi.org/10.3389/fgene.2011.00106
González-Recio, O., Toro, M. A., & Bach, A. (2015). Past, present, and future of epigenetics applied to livestock breeding. Frontiers in Genetics, 6, 305. https://doi.org/10.3389/fgene.2015.00305
Heard, E., & Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: Myths and mechanisms. Cell, 157(1), 95–109. https://doi.org/10.1016/j.cell.2014.02.045
Henderson, C. R. (1984). Application of linear models in animal breeding. Guelph, ON: University of Guelph.
Ibeagha-Awemu, E. M., & Zhao, X. (2015). Epigenetic marks: Regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Frontiers in Genetics, 6, 302. https://doi.org/10.3389/fgene.2015.00302
Jablonka, E. (2013). Epigenetic inheritance and plasticity: The responsive germline. Progress Biophysics Molecular Biology, 111, 99–107. https://doi.org/10.1016/j.pbiomolbio.2012.08.014
Jablonka, E., & Raz, G. (2009). Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. The Quarterly Review of Biology, 84(2), 131–176. https://doi.org/10.1086/598822
Jiao, F., Wang, X., Yan, Z., Liu, C., Yue, Z., Li, Z., … Wang, J. (2013). Effect of dynamic DNA methylation and histone acetylation on cPouV expression in differentiation of chick embryonic germ cells. Stem Cells and Development, 22, 2725–2735. https://doi.org/10.1089/scd.2013.0046
Leurox, S., Gourichon, D., Leterrier, C., Labrune, Y., Coustham, V., Rivière, S., … Pitel, F. (2017). Embryonic environment and transgenerational effects in quail. Genetics Selection Evolution, 49, 14. https://doi.org/10.1186/s12711-017-0292-7
Li, C., Guo, S., Zhang, M., Gao, J., & Guo, Y. (2015). DNA methylation and histone modification patterns during the late embryonic and early postnatal development of chickens. Poultry Science, 94, 706–721. https://doi.org/10.3382/ps/pev016
Li, S., Zhu, Y., Zhi, L., Han, X., Shen, J., Liu, Y., … Yang, X. (2016). DNA Methylation variation trends during the embryonic development of chicken. PLoS One, 11(7), https://doi.org/10.1371/journal.pone.0159230
Lopes, M. S., Bastiaansen, J. W., Janss, L., Knol, E. F., & Bovenhuis, H. (2015). Estimation of additive, dominance, and imprinting genetic variance using genomic data. G3: Genes|Genomes|Genetics, 5(12), 2629–2637. https://doi.org/10.1534/g3.115.019513
Moraes, T. G. V., Pishnamazi, A., Mba, E. T., Wenger, I. I., Renema, R. A., & Zuidhof, M. J. (2014). Effect of maternal dietary energy and protein on live performance and yield dynamics of broiler progeny from young breeders. Poultry Science, 93, 2818–2826. https://doi.org/10.3382/ps.2014-03928
Nätt, D., Lindqvist, N., Stranneheim, H., Lundeberg, J., Torjesen, P. A., & Jensen, P. (2009). Inheritance of acquired behaviour adaptations and brain gene expression in chickens. PLoS One, 4(7), e6405. https://doi.org/10.1371/journal.pone.0006405
NRC (1994). Nutrient requirements of poultry. 9th Revised ed. Washington, DC: The National Academies Press. https://doi.org/10.17226/2114
Quass, R. L. (1976). Computing the diagonal elements of the inverse of a large numerator relationship matrix. Biometrics, 32, 949–953. https://doi.org/10.2307/2529279
R Core Team (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org.
Skinner, M. K. (2011). Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics, 6(7), 838–842.
Slatkin, M. (2009). Epigenetic inheritance and the missing heritability problem. Genetics, 182, 845–850. https://doi.org/10.1534/genetics.109.102798
Szyf, M. (2015). Nongenetic inheritance and transgenerational epigenetics. Trends in Molecular Medicine, 21, 134–144. https://doi.org/10.1016/j.molmed.2014.12.004
Tal, O., Kisdi, E., & Jablonka, E. (2010). Epigenetic contribution to covariance between relatives. Genetics, 184(4), 1037–1050. https://doi.org/10.1534/genetics.109.112466
Triantaphyllopoulos, K. A., Ikonomopoulos, I., & Bannister, A. J. (2016). Epigenetics and inheritance of phenotype variation in livestock. Epigenetics Chromatin, 9, 31. https://doi.org/10.1186/s13072-016-0081-5
Varona, L., Munilla, S., Mouresan, E. F., González-Rodríguez, A., Moreno, C., & Altarriba, J. (2015). A Bayesian model for the analysis of transgenerational epigenetic variation. G3: Genes|Genomes|Genetics, 5(4), 477–485. https://doi.org/10.1534/g3.115.016725