DNA methylation; histone modification; genomic imprinting
Abstract :
[en] Epigenetics can be defined as changes in gene expression that can be inherited and do not alter the DNA sequence. There are two main epigenetic mechanisms, DNA methylation and histone modification. Genomic imprinting is a process of gene regulation in which only one allele is expressed. Transgenerational epigenetic inheritance is defined as he inheritance of epigenetic marks through germ cells, which controls the gene expression patterns and are passed down from one generation to another. In the animal breeding program it is important to access the extent that the transgenerational epigenetic inheritance also affects the efficiency of genetic selection. A better understanding of the epigenetic mechanisms and their transgenerational effects on the performance of the animals may allow greater gains in economic important traits.
Disciplines :
Animal production & animal husbandry
Author, co-author :
De Paiva, José Teodoro ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions animales et nutrition
Vilela de Resende, Marcos Deon
Tassinari Resende, Rafale
Rojas de Oliveira, Hinayah
Texeira Silva, Hugo
Caetano, Giovani da Costa
Sávio Lopes, Paulo
Fonseca e Silva, Fabyano
Language :
Portuguese
Title :
Epigenética: mecanismos, herança e implicações no melhoramento animal
Alternative titles :
[en] Epigenetics: mechanisms, inheritance and implications in animal breeding
Barlow, DP & Bartolomei, MS 2014, ‘Genomic imprinting in mammals’, Cold Spring Harbor Perspectives in Biology, vol. 6, no. 2. doi: 10.1101/cshperspect.a018382.
Berghof, TVL, Parmentier, HK & Lammers, A 2013, ‘Transgenerational epigenetic effects on innate immunity in broilers: An underestimated field to be explored?’, Poultry Science, vol. 92, no. 11, pp. 2904-2913. doi: 10.3382/ps.2013-03177.
Bernstein, BE, Meissner, A & Lander, ES 2007, ‘The mammalian epigenome’, Cell, vol. 128, no. 4, pp. 669-681. doi: 10.1016/j. cell.2007.01.033.
Bohacek, J & Mansuy, IM 2017, ‘A guide to designing germline-dependent epigenetic inheritance experiments in mammals, Nature Methods, vol. 14, no. 3, pp. 243-249. doi: 10.1093/eep/dvy008.
Daxinger, L & Whitelaw, E 2012, ‘Understanding transgenerational epigenetic inheritance via the gametes in mammals’, Nature Reviews Genetics, vol. 13, no. 3, pp. 153-162. doi: 10.1038/nrg3188.
Feeney, A, Nilsson, E, & Skinner, MK 2014, ‘Epigenetics and transgene-rational inheritance in domesticated farm animals’, Journal of Animal Science and Biotechnology, vol. 5, no. 1, pp. 48. doi: 10.1186/2049-1891-5-48.
Frésard, L, Morisson, M, Brun, JM, Collin, A, Pain, B, Minvielle, F & Pitel, F 2013, ‘Epigenetics and phenotypic variability: some interesting insights from birds’, Genetics Seletion Evolution, vol. 45, pp. 16-32. doi: 10.1186/1297-9686-45-16.
Gao, T, Zhao, MM, Zhang, L, Li, JL, Yu, LL, Lv, PA, Gao, F & Zhou, GH 2017, ‘Effects of in ovo feeding of 1-arginine on the development of lymphoid organs and small intestinal imune barrier function in posthatch broiler’, Animal Feed Science and Technology, vol. 225, pp. 8-19. doi: 10.1016/j.anifeedsci.2017.01.004.
Geiman, TM & Muegge, K 2010, ‘DNA Methylation in early develop-ment’, Molecular Reproduction and Development, vol. 77, no. 2, pp. 105-113. doi: 10.1002/mrd.21118.
Goddard, ME & Whitelaw, E 2014, ‘The use of epigenetic phenomena for the improvement of sheep and cattle’, Frontiers in Genetics, vol. 5, pp. 247. doi: 10.3389/fgene.2014.00247.
González-Recio, O 2012, ‘Epigenetics: a new challenge in the post--genomic era of livestock’, Frontiers in Genetics, vol. 2, pp. 106. doi: 10.3389/fgene.2011.00106.
González-Recio, O, Toro, MA & Bach, A 2015, ‘Past, presente, and future of epigenetics applied to livestock breeding’, Frontiers in Genetics, vol. 6, pp. 305. doi: 10.3389/fgene.2015.00305.
Haberland, M, Haberland, M, Montgomery, RL & Olson, EN 2009, ‘The many roles of histone deacetylases in development and physiology: implications for disease and therapy’, Nature Reviews Genetics, vol. 10, no. 1, pp. 32-42. doi: 10.1038/nrg2485.
Heard, E & Martienssen, RA 2014, ‘Transgenerational epigenetic inhe-ritance: myths and mechanisms’, Cell, vol. 157, no.1, pp. 95-109. doi: 10.1016/j.cell.2014.02.045.
Hemberger, M, Dean, W & Reik, W 2009, ‘Epigenetic dynamics of stem lineage commitment: digging Waddington’s canal’, Nature Reviews Molecular Cell Biology, vol. 10, pp. 526-537. doi: 10.1038/nrm2727.
Hu, J & Barret, RDH 2017. ‘Epigenetics in natural animal populations’, Journal of Animal Evolutionary Biology, vol. 30, no. 9, pp. 1612-1632. doi: 10.1111/jeb.13130.
Ibeagha-Awemu, EM & Zhao, X 2015, ‘Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs’, Frontiers in Genetics, vol. 6, pp. 302. doi: 10.3389/fgene.2015.00302.
Iqbal, K, Tran, DA, Li, AX, Warden, C, Bai, AY, Singh, P, Wu, X, Pfeifer, GP & Szabó, PE 2015, ‘Epigenome reprogramming in the mammalian germline corrects deleterious effects of endocrine disruptors globally and at imprinted genes’, Genome Biology, vol. 16, pp. 59. doi: 10.1186/s13059-015-0619-z.
Jablonka, E & Raz, G 2009, ‘Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution’, The Quarterly review of biology, vol. 84, no. 2, pp. 131-176. doi: 10.1086/598822.
Jammes, H, Junien, C & Chavatte-Palmer, P 2010, ‘Epigenetic control of development and expression of quantitative traits’, Reproduction, Fertility and Development, vol. 23, no.1, pp. 64-74. doi: 10.1071/RD10259.
Johannes, F & Colomé-Tatché, M 2011, ‘Quantitative epigenetics through epigenomic perturbation of isogenic lines’, Genetics, vol. 188, no. 1, pp. 215-227. doi: 10.1534/genetics.111.127118.
Kaminen-Ahola, N, Ahola, A, Maga, M, Mallitt, K, Fahey, P, Cox, TC, Whitelaw, E & Chong, S 2010, ‘Maternal etanol consumption alters the epigenotype and the phenotype of offspring in a mouse model’, Plos Genetics, vol. 6, no. 1. doi: 10.1371/journal.pgen.1000811.
Kim, JK, Samaranayake, M & Pradhan, S 2009, ‘Epigenetic mechanisms in mammals’, Cellular and molecular life sciences, vol. 66, no. 4, pp. 596-612. doi: 10.1007/s00018-008-8432-4.
Legube, G & Trouche, D 2003, ‘Regulating histone acetyltransferases and deacetylases’, Embo Reports, vol. 4, no. 10, pp. 944-947. doi: 10.1038/sj.embor.embor941.
Leurox, S, Gourichon, D, Leterrier, C, Labrune, Y, Coustham, V, Rivière, S, Zerjal, T, Coville, J, Morrison, M, Minvielle, F & Pitel, F 2017, ‘Em-bryonic environment and transgenerational effects in quail’, Genetics Selection Evolution, vol. 49. doi: 10.1186/s12711-017-0292-7.
Li, S, Zhu, Y, Zhi, L, Han, X, Shen, J, Liu, Y, Yao, J & Yang, X 2016, ‘DNA Methylation Variation Trends during the Embryonic Development of Chi-cken’, Plos One, vol. 11, no. 7. doi: 10.1371/journal.pone.0159230.
Lopes, MS, Bastiaansen, JW, Janss, L, Knol, EF & Bovenhuis, H 2015, ‘Estimation of additive, dominance, and imprinting genetic variance using genomic data’, G3: Genes| Genomes| Genetics, vol. 5, no. 12, pp. 2629-2637. doi: 10.1534/g3.115.019513.
Martínez, D, Pentinat, T, Ribó, S, Daviaud, D, Bloks, VW, Cebrià, J, Villalmanzo, N, Kalko, SG, Ramón-Krauel, M, Díaz, R, Plosch, T, Tost, J, Jiménez-Chillarón, JC 2014, ‘In útero undernutrition in male mice programs liver lipid metabolismo in the second--generation offspring involving altered Lxra DNA methylation’, Cell Metabolism, vol. 19, no. 6, pp. 941-951. doi: 10.1016/j. cmet.2014.03.026.
Morison, IM, Ramsay, JP & Spencer, HG 2005, ‘A censos of mammalian imprinting’, Trends in Genetics, vol. 21, no. 8, pp. 457-465. doi: 10.1016/j.tig.2005.06.008.
Paiva, JT, Resende, MDV, Resende, RT, Oliveira, HR, Silva, HT, Caetano, GC, Lopes, OS & Silva, FF 2018a, ‘Transgenerational epigenetic variance for body weight in meat quails’, Journal of Animal Breeding and Genetics, vol. 135, no. 3, pp. 178-185. doi: 10.1111/jbg.12329.
Paiva, JT, Resende, MDV, Resende, RT, Oliveira, HR, Silva, HT, Caeta-no, GC, Lopes, OS & Silva, FF 2018b, ‘A note on transgenerational epigenetics affecting egg quality traits in meat-type quail’, British Poultry Science. doi: 10.1080/00071668.2018.1514582.
O’Doherty, AM, MacHugh, DE, Spllane, C & Magee, DA 2015, ‘Ge-nomic imprinting effects on complex traits in domesticated animal species’, Frontiers in Genetics, vol. 6, pp. 156. doi: 10.3389/fgene.2015.00156.
Reik, W & Walter, J 2001, ‘Genomic imprinting: parental influence on the genome’, Nature Reviews Genetics, vol. 2, pp. 21-32. doi: 10.1038/35047554.
Rothstein, MA, Harrell, HL & Marchant, GE 2017, ‘Transgenera-tional epigenetics and environmental justice’, Environmental Epigenetics, vol. 3, no. 3, pp. 1-12. doi: 10.1093/eep/dvx011.
Sinclair, KD, Rutheford, KM, Wallace, JM, Bramed, JM, Stoger, R, Alberio, R, Sweetman, D, Gardner, DS, Perry, VE, Adam, CL, Ashworth, CJ, Robinson, JE & Dwyer, CM 2016, ‘Epigenetics and developmental programming of welfare and production traits in farm animals’, Reproduction, Fertility and Development, vol. 28, pp. 1443-1478. doi: 10.1071/RD16102.
Skinner, MK 2011, ‘Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability’, Epigeneti-cs, vol. 6, no. 7, pp. 838-842.
Strathdee, D, Whitelaw, CB & Clark, AJ 2008, ‘Distal transgene insertion affects CpG island maintenance during differentiation’, The Journal of Biological Chemistry, vol. 283, no. 17, pp. 11509-11515. doi: 10.1074/jbc.M709805200.
Suzuki, MM & Bird, A 2008, ‘DNA methylation landscapes: pro-vocative insights from epigenomics’, Nature Reviews Genetics, vol. 9, no. 6, pp. 465-476. doi:10.1038/nrg2341.
Szyf, M 2015, ‘Nongenetic inheritance and transgenerational epigenetics’, Trends in Molecular Medicine, vol. 21, no. 2, pp. 134-44. doi: 10.1016/j.molmed.2014.12.004.
Tal, O, Kisdi, E & Jablonka, E 2010, ‘Epigenetic contribution to covariance between relatives’, Genetics, vol. 184, no. 4, pp. 1037-1050. doi: 10.1534/genetics.109.112466.
Triantaphyllopoulos, KA, Ikonomopoulos, I & Bannister, AJ 2016, ‘Epigenetics and inheritance of phenotype variation in livestock’, Epigenetics Chromatin, vol. 9, pp. 31. doi: 10.1186/s13072-016-0081-5.
Varona, L, Munilla, S, Mouresan, EF, Gonzalez-Rodriguez, A, Moreno, C & Altarriba, J 2015, ‘A bayesian model for the analysis of transgenerational epigenetic variation’, G3: Genes| Genomes| Genetics, vol. 5, no. 4, pp. 477-485. doi: 10.1534/g3.115.016725.
Verhoeven, KJF, Vonholdt, BM & Sork, VL 2016, ‘Epigenetics in ecology and evolution: What we know and what we need to know’, Molecular Ecology, vol. 25, pp. 1631–1638. doi: 10.1111/mec.13617.
Weaver, ICG, Cervoni, N, Champagne, FA, D’Alessio, AC, Sharma, S, Seckl, JR, Dymov, S, Szyf, M & Meaney, MJ 2004, ‘Epigenetic programming by maternal behavior’, Nature Neuroscience, vol. 7, pp. 847–854. doi:10.1038/nn1276.
Youngson, NA & Whitelaw, E 2008, ‘Transgenerational epigenetic effects’, Annual Review of Genomics and Human Genetics, vol. 9, pp. 233–257. doi: 10.1146/annurev.genom.9.081307.164445.
Zentner, GE & Henikoff, S 2013, ‘Regulation of nucleosome dynamics by histone modifications’, Nature Structural e Molecular Biology, vol. 20, pp. 259–266. doi:10.1038/nsmb.2470.