This is an author-created, un-copyedited version of an article published in Superconductor Science and Technology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-6668/ab1824.
All documents in ORBi are protected by a user license.
Magnetic shielding; Bulk superconductors; Magnetic measurements
Abstract :
[en] We consider the properties of bulk superconductors to be used as low-frequency passive magnetic shields. Although remarkable shielding properties have been recently achieved using high-temperature superconductors of various kinds, one current issue is to assemble medium-size superconducting parts to obtain large superconducting volumes. The aim of the present work is to understand how hollow, semi-closed superconductors can be combined to improve the shielding properties over sizeable volumes. In axisymmetric superconducting geometries subjected to an axial field, 2D modelling can be used to understand important features of the shielding properties. When finite-size superconductors are subjected to a transverse field, 3D modelling must be used. In this work, we use 3D finite-element modelling with an A-phgr formulation to investigate various geometries in which a tube is closed by a superconducting element shaped like a disk, a cup, or another cup-shaped superconductor that is coaxial with the first. The simulations help in revealing the most performant configurations to use as a function of the geometry of the applied field. Under an axial field, the type of closing is found to be irrelevant and the key ingredient to improve the shielding factor is to reduce the average field in the opening plane, e.g. by using a thicker superconductor near the open end. Under a transverse field, the difference between the shielding properties arise from the different routes taken by flux lines to penetrate the shield. In particular, the presence of flux lines channelled through the gap between a tube and a cup-shaped sample surrounding the tube are detrimental to the shielding properties. The configurations where the tube surrounds the cup-shaped sample are found to yield much higher shielding factors, whose field dependence is further improved when the tube extends slightly beyond the end of the cup. The values of the shielding factors that can be reached under a transverse field of low amplitude are discussed by comparing them to those predicted for an ideal perfectly diamagnetic superconductor of similar dimensions.
Research Center/Unit :
SUPRATECS - Services Universitaires pour la Recherche et les Applications Technologiques de Matériaux Électro-Céramiques, Composites, Supraconducteurs - ULiège
Fagnard, Jean-François ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Vanderheyden, Benoît ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Electronique et microsystèmes
Pardo, Enric
Vanderbemden, Philippe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Capteurs et systèmes de mesures électriques
Language :
English
Title :
Magnetic shielding of various geometries of bulk semi-closed superconducting cylinders subjected to axial and transverse fields
Publication date :
06 June 2019
Journal title :
Superconductor Science and Technology
ISSN :
0953-2048
eISSN :
1361-6668
Publisher :
Institute of Physics Publishing, Bristol, United Kingdom
Claycomb J R and Miller J H Jr 1999 Rev. Sci. Instrum. 70 4562
Gozzelino L, Gerbaldo R, Ghigo G, Laviano F and Truccato M 2017 J. Supercond. Novel Magn. 30 749
Tomków Ł, Ciszek M and Chorowski M 2015 J. Appl. Phys. 117 043901
Denis S, Dusoulier L, Dirickx M, Vanderbemden P, Cloots R, Ausloos M and Vanderheyden B 2007 Supercond. Sci. Technol. 20 192
Gu C, Chen S, Pang T and Qu T M 2017 Appl. Phys. Lett. 110 193505
Bergen A, van Weers H J, Bruineman C, Dhallé M M J, Krooshoop H J G, ter Brake H J M, Ravensberg K, Jackson B D and Wafelbakker C K 2016 Rev. Sci. Instrum. 87 105109
Arpaia P, Ballarino A, Giunchi G and Montenero G 2014 J. Instrum. 9 P04020
Kvitkovic J, Patel S, Zhang M, Zhang Z, Peetz J, Marney A and Pamidi S 2018 IEEE Trans. Appl. Supercond. 28 9001705
Gömöry F, Solovyov M, Šouc J, Navau C, Prat-Camps J and Sanchez A 2012 Science 335 1466
Netter D, Leveque J, Ailam E, Douine B, Rezzoug A and Masson P J 2005 IEEE Trans. Appl. Supercond. 15 2186
Takahashi K, Fujishiro H and Ainslie M D 2018 Supercond. Sci. Technol. 31 044005
Prigozhin L and Sokolovsky V 2018 J. Appl. Phys. 123 233901
Jiles D 2015 Introduction to Magnetism and Magnetic Materials 2015 3rd edn (Boca Raton, FL: CRC Press)
Fagnard J F, Elschner S, Bock J, Dirickx M, Vanderheyden B and Vanderbemden P 2010 Supercond. Sci. Technol. 23 095012
Rabbers J J, Oomen M P, Bassani E, Ripamonti G and Giunchi G 2010 Supercond. Sci. Technol. 23 125003
Gozzelino L, Gerbaldo R, Ghigo G, Laviano F, Agostino A, Bonometti E, Chiampi M, Manzin A and Zilberti L 2013 IEEE Trans. Appl. Supercond. 23 8201305
Radovinsky A, Minervini J V, Miller C E, Bromberg L, Michael P C and Maggiore M 2014 IEEE Trans. Appl. Supercond. 24 4402505
Barna D 2017 Phys. Rev. Accel. Beams 20 041002
Capobianco-Hogan K G et al 2018 Nucl. Instrum. Methods. Phys. Res. A 877 149
Statera M, Balossinoa I, Barion L, Ciullo G, Contalbrigo M, Lenisa P, Lowry M M, Sandorfi A M and Tagliente G 2018 Nucl. Instrum. Methods. Phys. Res. A 882 17
Denis S, Dirickx M, Vanderbemden P, Ausloos M and Vanderheyden B 2007 Supercond. Sci. Technol. 20 418
Fagnard J F, Elschner S, Hobl A, Bock J, Vanderheyden B and Vanderbemden P 2012 Supercond. Sci. Technol. 25 104006
Hatwar R, Kvitkovic J, Herman C and Pamidi S 2015 IOP Conf. Ser.: Mater. Sci. Eng. 102 012012
Solovyov M, Šouc J, Gömöry F, Rikel M O, Mikulášová E, Ušáková M and Ušák E 2017 IEEE Trans. Appl. Supercond. 27 8800204
Claycomb J R 2015 Applied Superconductivity: Handbook on Devices and Applications (Weinheim, Germany: Wiley) pp 780-806
Giunchi G, Barna D, Bajas H, Brunner K, Német A and Petrone C 2018 IEEE Trans. Appl. Supercond. 28 6801705
Gozzelino L, Agostino A, Gerbaldo R, Ghigo G and Laviano F 2012 Supercond. Sci. Technol. 25 115013
Gozzelino L, Gerbaldo R, Ghigo G, Laviano F, Truccato M and Agostino A 2016 Supercond. Sci. Technol. 29 034004
Namburi D K, Shi Y, Palmer K G, Dennis A R, Durrell J H and Cardwell D A 2016 Supercond. Sci. Technol. 29 034007
Wéra L, Fagnard J F, Namburi D K, Shi Y, Vanderheyden B and Vanderbemden P 2017 IEEE Trans. Appl. Supercond. 27 6800305
Yang P T, Yang W M and Chen J L 2017 Supercond. Sci. Technol. 30 085003
Durrell J H, Ainslie M D, Zhou D, Vanderbemden P, Bradshaw T, Speller S, Filipenko M and Cardwell D A 2018 Supercond. Sci. Technol. 31 103501
Nariki S, Teshima H and Morita M 2016 Supercond. Sci. Technol. 29 034002
Wéra L, Fagnard J F, Hogan K, Vanderheyden B, Namburi D K, Shi Y, Cardwell D A and Vanderbemden P 2019 IEEE Trans. Appl. Supercond. 29 6801109
Gozzelino L, Gerbaldo R, Ghigo G, Laviano F, Torsello D, Bonino V, Truccato M, Batalu D, Grigoroscuta M A and Burdusel M 2019 Supercond. Sci. Technol. 32 034004
Hogan K, Fagnard J F, Wéra L, Vanderheyden B and Vanderbemden P 2018 Supercond. Sci. Technol. 31 015001
Pardo E and Kapolka M 2017 Supercond. Sci. Technol. 30 064007
Zhang M and Coombs T A 2012 Supercond. Sci. Technol. 25 015009
Zermeño V M R and Grilli F 2014 Supercond. Sci. Technol. 27 044025
Stenvall A, Lahtinen V and Lyly M 2014 Supercond. Sci. Technol. 27 104004
Prigozhin L and Sokolovsky V 2018 Supercond. Sci. Technol. 31 055018
Mager A J 1970 IEEE Trans. Magn. 6 67
Ohyama T, Minemoto T, Itoh M and Hoshino K 1993 IEEE Trans. Magn. 29 3583
Pavese F 1998 Magnetic shielding Handbook of Applied Superconductivity (Bristol: Institute of Physics Publishing) pp 1461-83
Ruiz-Alonso D, Coombs T A and Campbell A M 2004 Supercond. Sci. Technol. 17 S305
Grilli F, Stavrev S, Le Floch Y, Costa-Bouzo M, Vinot E, Klutsch I, Meunier G, Tixador P and Dutoit B 2005 IEEE Trans. Appl. Supercond. 15 17
Berger K et al 2017 Proc. 21st Int. Conf. on the Computation of Electromagnetic Fields (Compumag 2017) (Daejeon, South Korea, ID,) 110
Lousberg G P, Ausloos M, Geuzaine C, Dular P, Vanderbemden P and Vanderheyden B 2009 Supercond. Sci. Technol. 22 055005
GetDP: A General Environment for the Treatment of Discrete Problems http://hdl.handle.net/2268/22946 - ref-separator
Yamasaki H and Mawatari Y 2000 Supercond. Sci. Technol. 13 202
Berger K, Lévêque J, Netter D, Douine B and Rezzoug A 2007 IEEE Trans. Appl. Supercond. 17 3028
Navau C, Sanchez A, Pardo E, Chen D-X, Bartolomé E, Granados X, Puig T and Obradors X 2005 Phys. Rev. B 71 214507
Navau C, Prat-Camps J, Romero-Isart O, Cirac J I and Sanchez A 2014 Phys. Rev. Lett. 112 253901
Niculescu H, Schmidmeier R, Topolski B and Gielisse P J 1994 Physica C 229 105
Mager A 1968 J. Appl. Phys. 39 1914
Aldica G, Burdusel M, Cioca V and Badica P 2015 European Patent Office RO130252-A2, DPAN 2015-383635 Machinable superconducting material and magnetic field concentrator/storer