Nguyen, D. P.; Tran, Q. T.; Trinh, X. S.; Hoang, T. C.; Nguyen, H. N.; Nguyen, H. H. Crystallization and Magnetic Properties of Amorphous Iron-Chromium Oxide Nanoparticles Synthesized by Sonochemistry. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2012, 3 (1), 015017, 10.1088/2043-6262/3/1/015017
Machala, L.; Zboril, R.; Gedanken, A. Amorphous Iron(III) Oxide A Review. J. Phys. Chem. B 2007, 111 (16), 4003-4018, 10.1021/jp064992s
Panchal, V.; Bhandarkar, U.; Neergat, M.; Suresh, K. G. Synthesis of Iron Oxide Nanoparticles from Iron Acetylacetonate and Cyclopentadienyliron Dicarbonyl Dimer in Low Pressure Plasma-Effect of Plasma Parameters on Morphology and Magnetic Properties. Int. J. Nanosci. 2015, 14 (03), 1550004, 10.1142/S0219581X15500040
Bayer, B. C.; Baehtz, C.; Kidambi, P. R.; Weatherup, R. S.; Mangler, C.; Kotakoski, J.; Goddard, C. J. L.; Caneva, S.; Cabrero-Vilatela, A.; Meyer, J. C. et al. Nitrogen Controlled Iron Catalyst Phase during Carbon Nanotube Growth. Appl. Phys. Lett. 2014, 105 (14), 143111, 10.1063/1.4897950
Li, J.; Yu, F.; Wang, M.; Lai, Y.; Wang, H.; Lei, X.; Fang, J. Highly Dispersed Iron Nitride Nanoparticles Embedded in N Doped Carbon as a High Performance Electrocatalyst for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2017, 42 (5), 2996-3005, 10.1016/j.ijhydene.2016.12.148
Tsai, C.-W.; Tu, M.-H.; Chen, C.-J.; Hung, T.-F.; Liu, R.-S.; Liu, W.-R.; Lo, M.-Y.; Peng, Y.-M.; Zhang, L.; Zhang, J. et al. Nitrogen-Doped Graphene Nanosheet-Supported Non-Precious Iron Nitride Nanoparticles as an Efficient Electrocatalyst for Oxygen Reduction. RSC Adv. 2011, 1 (7), 1349-1357, 10.1039/c1ra00373a
Zhang, B.; Xiao, C.; Xie, S.; Liang, J.; Chen, X.; Tang, Y. Iron-Nickel Nitride Nanostructures in Situ Grown on Surface-Redox-Etching Nickel Foam: Efficient and Ultrasustainable Electrocatalysts for Overall Water Splitting. Chem. Mater. 2016, 28 (19), 6934-6941, 10.1021/acs.chemmater.6b02610
Chen, Q.; Wang, R.; Yu, M.; Zeng, Y.; Lu, F.; Kuang, X.; Lu, X. Bifunctional Iron-Nickel Nitride Nanoparticles as Flexible and Robust Electrode for Overall Water Splitting. Electrochim. Acta 2017, 247, 666-673, 10.1016/j.electacta.2017.07.025
Dong, Y.; Wang, B.; Zhao, K.; Yu, Y.; Wang, X.; Mai, L.; Jin, S. Air-Stable Porous Fe2N Encapsulated in Carbon Microboxes with High Volumetric Lithium Storage Capacity and a Long Cycle Life. Nano Lett. 2017, 17 (9), 5740-5746, 10.1021/acs.nanolett.7b02698
Liu, G.; Gao, J.; Ai, H.; Chen, X. Applications and Potential Toxicity of Magnetic Iron Oxide Nanoparticles. Small 2013, 9 (9-10), 1533-1545, 10.1002/smll.201201531
Zieschang, A.-M.; Bocarsly, J. D.; Dürrschnabel, M.; Molina-Luna, L.; Kleebe, H.-J.; Seshadri, R.; Albert, B. Nanoscale Iron Nitride, ϵ-Fe3N: Preparation from Liquid Ammonia and Magnetic Properties. Chem. Mater. 2017, 29 (2), 621-628, 10.1021/acs.chemmater.6b04088
Kortshagen, U. R.; Sankaran, R. M.; Pereira, R. N.; Girshick, S. L.; Wu, J. J.; Aydil, E. S. Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. Chem. Rev. 2016, 116 (18), 11061-11127, 10.1021/acs.chemrev.6b00039
Cvelbar, U.; Levchenko, I.; Filipič, G.; Mozetič, M.; Ostrikov, K. Plasma Control of Morpho-Dimensional Selectivity of Hematite Nanostructures. Appl. Phys. Lett. 2012, 100 (24), 243103, 10.1063/1.4729053
Wang, Q.; Song, M.; Chen, C.; Wei, Y.; Zuo, X.; Wang, X. Synthesis of Graphene-Based Pt Nanoparticles by a One-Step in Situ Plasma Approach under Mild Conditions. Appl. Phys. Lett. 2012, 101 (3), 033103, 10.1063/1.4737421
Pourzahedi, L.; Eckelman, M. J. Comparative Life Cycle Assessment of Silver Nanoparticle Synthesis Routes. Environ. Sci.: Nano 2015, 2 (4), 361-369, 10.1039/C5EN00075K
Woodard, A.; Xu, L.; Barragan, A. A.; Nava, G.; Wong, B. M.; Mangolini, L. On the Non-Thermal Plasma Synthesis of Nickel Nanoparticles. Plasma Processes Polym. 2018, 15 (1), 1700104, 10.1002/ppap.201700104
Mandal, R.; O'Shea, K.; Anthony, R. Silicon Nitride-Capped Silicon Nanocrystals via a Nonthermal Dual-Plasma Synthesis Approach. J. Vac. Sci. Technol., A 2018, 36 (5), 051303, 10.1116/1.5039352
Haye, E.; Busby, Y.; da Silva Pires, M.; Bocchese, F.; Job, N.; Houssiau, L.; Pireaux, J.-J. Low-Pressure Plasma Synthesis of Ni/C Nanocatalysts from Solid Precursors: Influence of the Plasma Chemistry on the Morphology and Chemical State. ACS Appl. Nano Mater. 2018, 1 (1), 265-273, 10.1021/acsanm.7b00125
Laurent-Brocq, M.; Job, N.; Eskenazi, D.; Pireaux, J.-J. Pt/C Catalyst for PEM Fuel Cells: Control of Pt Nanoparticles Characteristics through a Novel Plasma Deposition Method. Appl. Catal., B 2014, 147, 453-463, 10.1016/j.apcatb.2013.06.021
Busby, Y.; Stergiopoulos, V.; Job, N.; Pireaux, J. J. Low Pressure Plasma Synthesis of Pt/C Catalysts for Fuel Cells Applications. ISPC22 Conference proceeding; 2016.
Jack, K. H. The Iron-Nitrogen System: The Crystal Structures of ϵ-Phase Iron Nitrides. Acta Crystallogr. 1952, 5 (4), 404-411, 10.1107/S0365110X52001258
Leineweber, A.; Jacobs, H.; Hüning, F.; Lueken, H.; Kockelmann, W. Nitrogen Ordering and Ferromagnetic Properties of ϵ-Fe3N1+x (0.10 ≤ x ≤ 0.39) and ϵ-Fe3(N0.80C0.20)1.38. J. Alloys Compd. 2001, 316 (1), 21-38, 10.1016/S0925-8388(00)01435-3
Hendricks, S. B.; Kosting, P. R. The Crystal Structure of Fe2P, Fe2N, Fe3N and FeB. Z. Kristallogr.-Cryst. Mater. 1930, 74, 511-533, 10.1524/zkri.1930.74.1.511
Jacobs, H.; Rechenbach, D.; Zachwieja, U. Structure Determination of Γ′-Fe4N and ϵ-Fe3N. J. Alloys Compd. 1995, 227 (1), 10-17, 10.1016/0925-8388(95)01610-4
Bobo, J.-F.; Chatbi, H.; Vergnat, M.; Hennet, L.; Lenoble, O.; Bauer, P.; Piecuch, M. Magnetic and Structural Properties of Iron Nitride Thin Films Obtained by Argon-nitrogen Reactive Radio-frequency Sputtering. J. Appl. Phys. 1995, 77 (10), 5309-5313, 10.1063/1.359286
Naganuma, H.; Nakatani, R.; Endo, Y.; Kawamura, Y.; Yamamoto, M. Structure and Magnetic Properties of Iron Nitride Films Prepared by Reactive Dc Magnetron Sputtering. Jpn. J. Appl. Phys. 2004, 43 (7R), 4166, 10.1143/JJAP.43.4166
Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, reissue ed.; Physical Electronics: Eden Prairie, MN, 1995.
Torres, J.; Perry, C. C.; Bransfield, S. J.; Fairbrother, D. H. Low-Temperature Oxidation of Nitrided Iron Surfaces. J. Phys. Chem. B 2003, 107 (23), 5558-5567, 10.1021/jp027802w
Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257 (7), 2717-2730, 10.1016/j.apsusc.2010.10.051
Prieto, P.; Marco, J. F.; Sanz, J. M. Synthesis and characterization of iron nitrides. An XRD, Mössbauer, RBS and XPS characterization. Surf. Interface Anal. 2008, 40 (3-4), 781-785, 10.1002/sia.2658
Esaka, F.; Furuya, K.; Shimada, H.; Imamura, M.; Matsubayashi, N.; Sato, H.; Nishijima, A.; Kawana, A.; Ichimura, H.; Kikuchi, T. Comparison of Surface Oxidation of Titanium Nitride and Chromium Nitride Films Studied by X-Ray Absorption and Photoelectron Spectroscopy. J. Vac. Sci. Technol., A 1997, 15 (5), 2521-2528, 10.1116/1.580764
Milošev, I.; Strehblow, H.-H.; Navinšek, B. Comparison of TiN, ZrN and CrN Hard Nitride Coatings: Electrochemical and Thermal Oxidation. Thin Solid Films 1997, 303 (1), 246-254, 10.1016/S0040-6090(97)00069-2
Graat, P. C. J.; Somers, M. A. J.; Mittemeijer, E. J. The Initial Oxidation of ϵ-Fe2N1-x: An XPS Investigation. Appl. Surf. Sci. 1998, 136 (3), 238-259, 10.1016/S0169-4332(98)00345-6
Prieto, P.; Kirby, R. E. X-ray Photoelectron Spectroscopy Study of the Difference between Reactively Evaporated and Direct Sputter-deposited TiN Films and Their Oxidation Properties. J. Vac. Sci. Technol., A 1995, 13 (6), 2819-2826, 10.1116/1.579711
Panda, R. N.; Gajbhiye, N. S. Magnetic Properties of Single Domain ϵ-Fe3N Synthesized by Borohydride Reduction Route. J. Appl. Phys. 1997, 81 (1), 335-339, 10.1063/1.364115
Bhattacharyya, S.; Shivaprasad, S. M.; Gajbhiye, N. S. Variation of Magnetic Ordering in ϵ-Fe3N Nanoparticles. Chem. Phys. Lett. 2010, 496, 122-127, 10.1016/j.cplett.2010.07.030
Qi, Y.; Liu, X.; Huang, W.; Lu, H.; Gao, J. The Preparation and Ferromagnetism of Single Crystal ϵ-Fe3N(111) Film on SrTiO3(100) Substrate. Vacuum 2016, 133, 13-17, 10.1016/j.vacuum.2016.08.004
Gudmundsson, J. T. On the Effect of the Electron Energy Distribution on the Plasma Parameters of an Argon Discharge: A Global (Volume-Averaged) Model Study. Plasma Sources Sci. Technol. 2001, 10 (1), 76, 10.1088/0963-0252/10/1/310
Puliyalil, H.; Cvelbar, U. Selective Plasma Etching of Polymeric Substrates for Advanced Applications. Nanomaterials 2016, 6 (6), 108, 10.3390/nano6060108
Lopez, T.; Mangolini, L. Crystallization Kinetics of Plasma-Produced Amorphous Silicon Nanoparticles. MRS Online Proc. Libr. 2013, 1536, 213-218, 10.1557/opl.2013.755
Awadallah-F, A.; Al-Muhtaseb, S. A.; Jeong, H.-K. Selective Adsorption of Carbon Dioxide, Methane and Nitrogen Using Resorcinol-Formaldehyde-Xerogel Activated Carbon. Adsorption 2017, 23 (7-8), 933-944, 10.1007/s10450-017-9908-z
Alegre, C.; Gálvez, M. E.; Baquedano, E.; Moliner, R.; Pastor, E.; Lázaro, M. J. Oxygen-Functionalized Highly Mesoporous Carbon Xerogel Based Catalysts for Direct Methanol Fuel Cell Anodes. J. Phys. Chem. C 2013, 117 (25), 13045-13058, 10.1021/jp400824n
Alegre, C.; Sebastián, D.; Baquedano, E.; Gálvez, M. E.; Moliner, R.; Lázaro, M. Tailoring Synthesis Conditions of Carbon Xerogels towards Their Utilization as Pt-Catalyst Supports for Oxygen Reduction Reaction (ORR). Catalysts 2012, 2 (4), 466-489, 10.3390/catal2040466
Yook, J. Y.; Jun, J.; Kwak, S. Amino Functionalization of Carbon Nanotube Surfaces with NH3 Plasma Treatment. Appl. Surf. Sci. 2010, 256 (23), 6941-6944, 10.1016/j.apsusc.2010.04.075
Felten, A.; Bittencourt, C.; Pireaux, J. J.; Van Lier, G.; Charlier, J. C. Radio-Frequency Plasma Functionalization of Carbon Nanotubes Surface O2, NH3, and CF4 Treatments. J. Appl. Phys. 2005, 98 (7), 074308, 10.1063/1.2071455
Lin, Y.-C.; Lin, C.-Y.; Chiu, P.-W. Controllable Graphene N-Doping with Ammonia Plasma. Appl. Phys. Lett. 2010, 96 (13), 133110, 10.1063/1.3368697
Kramer, N. J.; Anthony, R. J.; Mamunuru, M.; Aydil, E. S.; Kortshagen, U. R. Plasma-Induced Crystallization of Silicon Nanoparticles. J. Phys. D: Appl. Phys. 2014, 47 (7), 075202, 10.1088/0022-3727/47/7/075202
Rohith Vinod, K.; Saravanan, P.; Sakar, M.; Balakumar, S. Insights into the Nitridation of Zero-Valent Iron Nanoparticles for the Facile Synthesis of Iron Nitride Nanoparticles. RSC Adv. 2016, 6 (51), 45850-45857, 10.1039/C6RA04935D
Brown, W. F. Theory of the Approach to Magnetic Saturation. Phys. Rev. 1940, 58, 736-743, 10.1103/PhysRev.58.736
Zhang, H.; Zeng, D.; Liu, Z. The Law of Approach to Saturation in Ferromagnets Originating from the Magnetocrystalline Anisotropy. J. Magn. Magn. Mater. 2010, 322 (16), 2375-2380, 10.1016/j.jmmm.2010.02.040
Schliehe, C.; Yuan, J.; Glatzel, S.; Siemensmeyer, K.; Kiefer, K.; Giordano, C. Iron Nitride and Carbide: From Crystalline Nanoparticles to Stable Aqueous Dispersions. Chem. Mater. 2012, 24 (14), 2716-2721, 10.1021/cm3007342
Ningthoujam, R. S.; Gajbhiye, N. S. Magnetic Study of Single Domain ϵ-Fe3N Nanoparticles Synthesized by Precursor Technique. Mater. Res. Bull. 2008, 43 (5), 1079-1085, 10.1016/j.materresbull.2007.06.011
Robbins, M.; White, J. G. Magnetic Properties of Epsilon-Iron Nitride. J. Phys. Chem. Solids 1964, 25 (7), 717-720, 10.1016/0022-3697(64)90182-9
Rohith Vinod, K.; Saravanan, P.; Sakar, M.; Vinod, V. T. P.; Cernik, M.; Balakumar, S. Large Scale Synthesis and Formation Mechanism of Highly Magnetic and Stable Iron Nitride (ϵ-Fe3N) Nanoparticles. RSC Adv. 2015, 5 (69), 56045-56048, 10.1039/C5RA07566A
Li, D.; Zhang, Z. D.; Li, W. F.; Feng, W. J.; Choi, C. J.; Kim, B. K. Electrical and Magnetic Properties of ϵ-Fe3N Nanoparticles Synthesized by Chemical Vapor Condensation Process. J. Magn. Magn. Mater. 2006, 307 (1), 128-133, 10.1016/j.jmmm.2006.03.056
Yu, Z. Q.; Zhang, J. R.; Du, Y. W. Magnetic Properties and Preparation of Fe3N Compound. J. Magn. Magn. Mater. 1996, 159 (1-2), L8-L10, 10.1016/0304-8853(96)00321-6
Dudek, G.; Turczyn, R.; Gnus, M.; Konieczny, K. Pervaporative Dehydration of Ethanol/Water Mixture through Hybrid Alginate Membranes with Ferroferic Oxide Nanoparticles. Sep. Purif. Technol. 2018, 193, 398-407, 10.1016/j.seppur.2017.09.023
Dudek, G.; Gnus, M.; Turczyn, R.; Strzelewicz, A.; Krasowska, M. Pervaporation with Chitosan Membranes Containing Iron Oxide Nanoparticles. Sep. Purif. Technol. 2014, 133, 8-15, 10.1016/j.seppur.2014.06.032
Toledo, E. J. L.; Ramalho, T. C.; Magriotis, Z. M. Influence of Magnetic Field on Physical-Chemical Properties of the Liquid Water: Insights from Experimental and Theoretical Models. J. Mol. Struct. 2008, 888 (1), 409-415, 10.1016/j.molstruc.2008.01.010