methods: statistical; techniques: high angular resolution; techniques: image processing; planets and satellites: detection; Astrophysics - Instrumentation and Methods for Astrophysics
Abstract :
[en] Direct imaging of exoplanets is a challenging task as it requires to reach a high contrast at very close separation to the star. Today, the main limitation in the high-contrast images is the quasi-static speckles that are created by residual instrumental aberrations. They have the same angular size as planetary companions and are often brighter, hence hindering our capability to detect exoplanets. Dedicated observation strategies and signal processing techniques are necessary to disentangle these speckles from planetary signals. The output of these methods is a detection map in which the value of each pixel is related to a probability of presence of a planetary signal. The detection map found in the literature relies on the assumption that the residual noise is Gaussian. However, this is known to lead to higher false positive rates, especially close to the star. In this paper, we re-visit the notion of detection map by analysing the speckle noise distribution, namely the Modified Rician distribution. We use non-asymptotic analysis of the sum of random variables to show that the tail of the distribution of the residual noise decays as an exponential distribution, hence explaining the high false detection rate obtained with the Gaussian assumption. From this analysis, we introduce a novel time domain detection map and we demonstrate its capabilities and the relevance of our approach through experiments on real data. We also provide an empirical rule to determine detection threshold providing a good trade-off between true positive and false positive rates for exoplanet detection.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Beuzit J.-L. et al., 2008, in McLean I. S., Ramsay S. K., Takami H., eds, Proc. SPIE Conf. Ser. Vol. 7735, Ground-based and Airborne Instrumentation for Astronomy II. SPIE, Bellingham, p. 701418
Boccaletti A. et al., 2008, in Hubin N., Max C. E., Wizinowich P. L., eds, Proc. SPIE Conf. Ser. Vol. 7015, Adaptive Optics Systems. SPIE, Bellingham, p. 10
Bonnefoy M. et al., 2014, A&A, 567, L9
Bowler B. P., Nielsen E. L., 2018, Occurence Rates fro Direct Imaging Surveys, Handbook of Exoplanets,1
Cantalloube F. et al., 2015, A&A, 582, A89
Chauvin G. et al., 2015, A&A, 573, A127
Crossfield I. J. M., 2015, PASP, 127, 941
Currie T., Cloutier R., Brittain S., Grady C., Burrows A., Muto T., Kenyon S. J., Kuchner M. J., 2015, ApJ, 814, L27
Delorme P. et al., 2017a, A&A, 608, A79
Delorme P. et al., 2017b, A&A, 608, A79
Espaillat C. et al., 2014, in Beuther H., Klessen R. S., Dullemond C. P., Henning T., eds, Protostars and Planets VI. University of Arizona Press, Tucson, p. 914
Fitzgerald M. P., Graham J. R., 2006, ApJ, 637, 541
Gonzalez C. G., Absil O., Absil P., Van Droogenbroeck M., Mawet D., Surdej J., 2016, A&A, 598, A54
Gonzalez C. A. G., Absil O., Van Droogenbroeck M., 2018, A&A, 613, A71
Gonzalez C. A. G. et al., 2017b, AJ, 154, 7
Goodman J. W., 1975, in Laser Speckle and Related Phenomena. Springer-Verlag, Berlin, p. 9
Guyon O., 2005, ApJ, 629, 592
Guyon O., Pluzhnik E. A., Kuchner M. J., Collins B., Ridgway S. T., 2006, ApJS, 167, 81
Heiberger R. M., Holland B., 2004, Statistical Analysis and Data Displays Springer, Berlin NIST Digital Library of Mathematical Functions, 2018, Available at: https: //dlmf.nist.gov
Hinkley S. et al., 2007, ApJ, 654, 633
Hinz P. M. et al., 2016, in Malbet F., Creech-EakmanM. J., Tuthill P. G., eds, Proc. SPIE Conf. Ser. Vol. 9907, Optical and Infrared Interferometry and Imaging V. SPIE, Bellingham, p. 14
Hughes A. M., Duchene G., Matthews B., 2018, ARA&A, 56, 541
Jovanovic N. et al., 2015, PASP, 127, 890
KonopackyQ.M., Barman T. S., Macintosh B. A., Marois C., 2013, Science, 339, 1398
Lafreniere D., Marois C., Doyon R., Nadeau D., Artigaú E., 2007, ApJ, 660, 770
Lagrange A.-M. et al., 2010, Science, 329, 57
Lee E. J., Chiang E., 2016, ApJ, 827, 125
Macintosh B. et al., 2015, Science, 350, 64
Macintosh B. A. et al., 2008, Adaptive Optics Systems, International Society for Optics and Photonics Vol. 7015,, p. 701518
Marois C., Lafreniere D., Doyon R., Macintosh B., Nadeau D., 2006, ApJ, 641, 556
Marois C., Lafreniere D., Macintosh B., Doyon R., 2008, ApJ, 673, 647
Marois C., Macintosh B., Véran J.-P., 2010, Adaptive Optics Systems II, International Society for Optics and Photonics Vol. 7736. p. 77361J
Mawet D. et al., 2012, Space Telescopes and Instrumentation 2012 : Optical, Infrared, and Milimeter Wave, Vol. 8442, p. 844204
Mawet D. et al., 2013, in Shaklan S., ed., Proc. SPIE Conf. Ser. Vol. 8864, Techniques and Instrumentation for Detection of Exoplanets VI. SPIE, Bellingham, p. 9
Mawet D. et al., 2014, ApJ, 792, 97
McLean I. S., Chaffee F. H., 2000, in Iye M., Moorwood A. F., eds, Proc. SPIE Conf. Ser. Vol. 4008, Optical and IR Telescope Instrumentation and Detectors. SPIE, Bellingham, p. 2
Metz C. E., 2006, J. Am. Coll. Radiol., 3, 413
Milli J. et al., 2017, A&A, 597, L2
Papoulis A., Pillai S. U., 2002, Probability, Random Variables, and Stochastic Processes. Tata McGraw-Hill Education
Pueyo L. et al., 2015, ApJ, 803, 31
Quanz S. P., Amara A., MeyerM. R., Girard J. H., KenworthyM. A., Kasper M., 2015, ApJ, 807, 64
Ruffio J.-B. et al., 2017, ApJ, 842, 14
Samland M. et al., 2017, A&A, 603, A57
Soummer R., 2005, ApJ, 618, L161
Soummer R., Ferrari A., Aime C., Jolissaint L., 2007, ApJ, 669, 642
Soummer R., Pueyo L., Larkin J., 2012, ApJ, 755, L28
Vershynin R., 2010, preprint (arXiv:1011.3027)
Wainwright M. J., 2019, High-dimensional Statistics: A Non-asymptotic Viewpoint, Vol. 48. Cambridge Univ. Press, Cambridge