[en] The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscaleengineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol–gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 107 nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscaleengineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.
Disciplines :
Chemistry
Author, co-author :
Carabetta, Joseph ; Université de Liège - ULiège > Department of Chemical Engineering > Ingéniérie électrochimique
Language :
English
Title :
Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition
Publication date :
03 January 2017
Journal title :
Nanotechnology
ISSN :
0957-4484
eISSN :
1361-6528
Publisher :
Institute of Physics Publishing, United Kingdom
Volume :
28
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
The authors would like to thank SOLEIL and CRG-F committee for beamtime allocation (20140419), the BM2-D2AM staff at ESRF for his assistance during the experiment and Hervé Roussel (LMGP, Grenoble, France) for his assistance regarding the XRR measurements. This work was partly supported by the Carnot Institute Energies du Futur through the project CLAPE and by Grenoble INP via a Bonus Qualité Recherche grant through the project CELESTE. Funding from la Région Rhône-Alpes via the Research Cluster Micro– Nano and from the Nanosciences Foundation of Grenoble is also acknowledged. SG held a doctoral fellowship from la Région Rhône-Alpes. The authors would also like to thank the facilities, and the scientific and technical assistance of the CMTC characterization platform of Grenoble INP supported by the Centre of Excellence of Multifunctional Architectured Materials ‘CEMAM’ n°ANR-10-LABX-44-01 funded by the ‘Investments for the Future’ Program. RP and VC held doctoral and post-doctoral fellowships from Labex CEMAM and Nanosciences Foundation of Grenoble, respectively. D D F was supported by Nanosciences Foundation of Grenoble and the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Zúñiga-Pérez, J., Polarity in GaN and ZnO: Theory, measurement, growth, and devices 2016 (2016) Appl. Phys. Rev., 3
Gonakiowski, J., Finocchi, F., Noguera, C., Polarity of oxide surfaces and nanostructures (2008) Rep. Prog. Phys., 71 (1)
Wöll, C., The chemistry and physics of zinc oxide surfaces (2007) Prog. Surf. Sci., 82, pp. 55-120
Dong, Y., Fang, Z.Q., Look, D.C., Cantwell, G., Zhang, J., Song, J.J., Brillson, L.J., Zn- and O-face polarity effects at ZnO surfaces and metal interfaces (2008) Appl. Phys. Lett., 93
Lautenschläger, S., Sann, J., Volbers, N., Meyer, B.K., Hoffmann, A., Haboeck, U., Wagner, M.R., Asymmetry in the excitonic recombinations and impurity incorporation of the two polar faces of homoepitaxially grown ZnO films (2008) Phys. Rev., 77
Wang, Z.L., Zinc oxide nanostructures: Growth, properties and applications (2004) J. Phys.: Condens. Matter, 16 (25), pp. R829-R858
Xu, S., Wang, Z.L., One-dimensional ZnO nanostructures: Solution growth and functional properties (2011) Nano Res., 4, pp. 1013-1098
Perillat-Merceroz, G., Thierry, R., Jouneau, P.H., Ferret, P., Feuillet, G., Compared growth mechanisms of Zn-polar ZnO nanowires on O-polar ZnO and on sapphire (2012) Nanotechnol., 23
Wang, Z.L., Song, J.H., Piezoelectric nanogenerators based on zinc oxide nanowire arrays (2006) Science, 312, pp. 242-246
Iwanaga, H., Shibata, N., A note on the orientation of ZnO ribbon crystal (1972) Japan. J. Appl. Phys., 11, pp. 121-122
Iwanaga, H., A note on the orientation of ZnO ribbon crystal (1972) Japan. J. Appl. Phys., 11, p. 429A
Baxter, J.B., Wu, F., Aydil, E.S., Growth mechanism and characterization of zinc oxide hexagonal columns (2003) Appl. Phys. Lett., 83, pp. 3797-3799
Lee, S.H., Ordered arrays of ZnO nanorods grown on periodically polarity-inverted surfaces (2008) Nano Lett., 8, pp. 2419-2422
Cherns, D., Sun, Y., Defect reduction by epitaxial lateral overgrowth of nanorods in ZnO/(0001) sapphire films (2008) Appl. Phys. Lett., 92
Sun, Y., Cherns, D., Doherty, R.P., Warren, J.L., Heard, P.J., Reduction of threading dislocations in ZnO/(0001) sapphire film heterostructure by epitaxial lateral overgrowth of nanorods (2008) J. Appl. Phys., 104
De La Mata, M., Polarity assignment in ZnTe, GaAs, ZnO, and GaN-AlN nanowires from direct dumbbell analysis (2012) Nano Lett., 12, pp. 2579-2586
Schuster, F., Laumer, B., Zamani, R.R., Magén, C., Morante, J.R., Arbiol, J., Stutzmann, M., P-GaN/n-ZnO heterojunction nanowires: Optoelectronic properties and the role of interface polarity (2014) ACS Nano, 8, pp. 4376-4384
Jasinski, J., Zhang, D., Parra, J., Katkanant, V., Leppert, V.J., Application of channeling-enhanced electron energy-loss spectroscopy for polarity determination in ZnO nanopillars (2008) Appl. Phys. Lett., 92
Perillat-Merceroz, G., Jouneau, P.H., Feuillet, G., Thierry, R., Rosina, M., Ferret, P., MOCVD growth mechanisms of ZnO nanorods (2010) J. Phys.: Conf. Ser., 209 (1)
Sallet, V., Sartel, C., Vilar, C., Lusson, A., Galtier, P., Opposite crystal polarities observed in spontaneous and vapor-liquid-solid grown ZnO nanowires (2013) Appl. Phys. Lett., 102
Sun, Y., Riley, D.J., Ashfold, M.N.R., Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates (2006) J. Phys. Chem., 110, pp. 15186-15192
Nicholls, D.P., Vincent, R., Cherns, D., Sun, Y., Ashfold, M.N.R., Polarity determination of zinc oxide nanorods by defocused convergent-beam electron diffraction (2007) Phil. Mag. Lett., 87, pp. 417-421
Scrymgeour, D.A., Sounart, T.L., Simmons, N.C., Hsu, J.W.P., Polarity and piezoelectric response of solution grown zinc oxide nanocrystals on silver (2007) J. Appl. Phys., 101
Guillemin, S., Rapenne, L., Roussel, H., Sarigiannidou, E., Brémond, G., Consonni, V., The crucial role of crystal orientation and polarity (2013) J. Phys. Chem., 117, pp. 20738-20745
Consonni, V., Sarigiannidou, E., Appert, E., Bocheux, A., Guillemin, S., Donatini, F., Robin, Y.C., Robaut, F., Selective area growth of well-ordered ZnO nanowire arrays with controllable polarity (2014) ACS Nano, 8, pp. 4761-4770
Wu, Y.J., Liao, C.H., Hsieh, C.Y., Lee, P.M., Wei, Y.S., Liu, Y.S., Chen, C.H., Liu, C.Y., Local electronic structures and polarity of ZnO nanorods grown on GaN substrates (2015) J. Phys. Chem., 119, pp. 5122-5128
Rathore, N.N., Sridhara Rao, D.V., Sarkar, S.K., Growth of a polarity controlled ZnO nanorod array on a glass/FTO substrate by chemical bath deposition (2015) RSC Adv., 5, pp. 28251-28257
Vayssieres, L., Keis, K., Lindquist, S.E., Hagfeldt, A., Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO (2001) J. Phys. Chem., 105, pp. 3350-3352
Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai, G., Yang, P., General route to vertical ZnO nanowire arrays using textured ZnO seeds (2005) Nano Lett., 5, pp. 1231-1236
Liu, J., She, J., Deng, S., Chen, J., Xu, N., Ultra-thin seed-layer for tuning density of ZnO nanowire arrays and their field emission characteristics (2008) J. Phys. Chem., 112, pp. 11685-11690
Chen, S.W., Wu, J.M., Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method (2011) Acta Mater., 59, pp. 841-847
Guillemin, S., Consonni, V., Appert, E., Puyoo, E., Rapenne, L., Roussel, H., Critical nucleation effects on the structural relationship between ZnO seed layer and nanowires (2012) J. Phys. Chem., 116, pp. 25106-25111
Guillemin, S., Appert, E., Roussel, H., Doisneau, B., Parize, R., Boudou, T., Brémond, G., Consonni, V., Controlling the structural properties of single step, dip coated, ZnO seed layers for growing perfectly aligned nanowire arrays (2015) J. Phys. Chem., 119, pp. 21694-21703
Parize, R., Garnier, J., Chaix-Pluchery, O., Verrier, C., Appert, E., Consonni, V., Effects of hexamethylenetetramine on the nucleation and radial growth of ZnO nanowires by chemical bath deposition (2016) J. Phys. Chem., 120, pp. 5242-5250
Nishikawa, S., Matsukawa, K., Hemihedry of zincblende and x-ray reflexion (1928) Proc. Imp. Acad. Japan, 4, pp. 96-97. , https://jstage.jst.go.jp/article/pjab1912/4/3/4_3_96/_pdf
Coster, D., Knol, K., Prins, J., Unterschiede in der intensität der Röntgenstrahlen-reflexion an den beiden 111-flächen der zinkblende (1930) Z. Phys., 63, pp. 345-369
Cole, H., Stemple, N.R., Effects of crystal perfection and polarity on absorption edges seen in Bragg diffraction (1962) J. Appl. Phys., 33, pp. 2227-2233
Fewster, P.F., Crystallographic polarity and chemical etching of CdxHg1-xTe (1981) J. Appl. Phys., 52, pp. 4568-4571
Stevenson, A.W., Wilkins, S.W., Kwietniak, M.S., Pain, G.N., Polarity determination of single-crystal epitaxial layers by x-ray diffraction (1989) J. Appl. Phys., 66, p. 4198
Horning, R.D., Goldenberg, B.L., AlxGa1-xN polarity determination by x-ray diffraction (1989) Appl. Phys. Lett., 55, pp. 1721-1723
Mariano, A.N., Hanneman, R.E., Crystallographic polarity of ZnO crystals (1963) J. Appl. Phys., 34, pp. 384-388
Barns, R.L., Keve, E.T., Abrahams, S.C., X-ray determination of polarity sense by anomalous scattering at an absorption edge (1970) J. Appl. Crystallogr., 3, pp. 27-32
Tampo, H., Fons, P., Yamada, A., Kim, K.-K., Shibata, H., Matsubara, K., Niki, S., Kanie, H., Determination of crystallographic polarity of ZnO layers (2005) Appl. Phys. Lett., 87
Shelton, C.T., Sachet, E., Paisley, E.A., Hoffmann, M.P., Rajan, J., Collazo, R., Sitar, Z., Maria, J.P., Polarity characterization by anomalous x-ray dispersion of ZnO films and GaN lateral polar structures (2014) J. Appl. Phys., 115
Hestroffer, K., Leclere, C., Bougerol, C., Renevier, H., Daudin, B., Polarity of GaN nanowires grown by lasma-assisted molecular beam epitaxy on Si(111) (2011) Phys. Rev., 84
Favre-Nicolin, V., Proietti, M.G., Leclere, C., Katcho, N.A., Richard, M.I., Renevier, H., Multiwavelength anomalous diffraction and diffraction anomalous fine structure to study composition and strain of semiconductor nanostructures (2012) Eur. Phys. J. Spec. Top., 208, pp. 189-216
Rodriguez, B.J., Callahan, C., Kalinin, S.V., Proksch, R., Dual-frequency resonance-tracking atomic force microscopy (2007) Nanotechnology, 18 (47)
Bijvoet, J.M., Peerdeman, A.F., Van Bommel, A.J., Determination of the absolute configuration of ooptically active compounds by means of x-rays (1951) Nature, 168, pp. 271-272
Als-Nielsen, J., McMorrow, D., (2011) Elements of Modern X-ray Physics, , 2nd edn (Chichester: Wiley)
Renevier, H., Grenier, S., Arnaud, S., Berar, J.F., Caillot, B., Hodeau, J.L., Letoublon, A., Ravel, B., Diffraction anomalous fine-structure spectroscopy at beamline BM2 at the European synchrotron radiation facility (2003) J. Synchrotron Radiat., 10, pp. 435-444
Kisi, E.H., Elcombe, M.M., U parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction (1989) Acta Crystallogr., 45, pp. 1867-1870
Hodeau, J., Favre-Nicolin, V., Bos, S., Renevier, H., Lorenzo, E., Berar, J.R., Resonant diffraction (2011) Chem. Rev., 101, pp. 1843-1868
Nix, W.D., Clemens, B.M., Crystallite coalescence: A mechanism for intrinsic tensile stresses (1999) J. Mater. Res., 14, pp. 3467-3473
Glas, F., Critical dimensions fort he plastic relaxation of strained axial heterostructures in free-standing nanowires (2006) Phys. Rev., 74
Borowiak, A.S., Baboux, N., Albertini, D., Vilquin, B., Saint-Girons, G., Pelloquin, S., Gautier, B., Electromechanical response of amorphous LaAlO3 thin film probed by scanning probed microscopies (2014) Appl. Phys. Lett., 105
Brugère, A., Gautier, B., Gidon, S., Abnormal switching of ferroelectric domains created by the tip of an atomic force microscope in a congruent LiTaO3 single-crystal thin film (2011) J. Appl. Phys., 110
Guillemin, S., Sarigiannidou, E., Appert, E., Donatini, F., Renou, G., Bremond, G., Consonni, V., Spontaneous shape transition of thin films into ZnO nanowires with high structural and optical quality (2015) Nanoscale, 7, pp. 16994-17003
Znaidi, L., Sol-gel-deposited ZnO thin films: A review. Sol-gel deposited ZnO thin films: A review (2010) Mater. Sci. Eng., 174, pp. 18-30
Thompson, C.V., Structure evolution during processing of polycrystalline films (2000) Annu. Rev. Mater. Res., 30, pp. 159-190
Consonni, V., Rey, G., Roussel, H., Doisneau, B., Blanquet, E., Bellet, D., Preferential orientation of fluorine-doped SnO2 thin films: The effects of growth temperature (2013) Acta Mater., 61, pp. 22-31
Wander, A., Schedin, F., Steadman, P., Norris, A., McGrath, R., Turner, T.S., Thornton, G., Harrison, N.M., Stability of polar oxide surfaces (2001) Phys. Rev. Lett., 86, pp. 3811-3814
Tang, C., Spencer, M.J.S., Barnard, A.S., Activity of ZnO polar surfaces: An insight from surface energies (2014) Phys. Chem. Chem. Phys., 16, pp. 22139-22144
Kresse, G., Dulub, O., Diebold, U., Competing stabilization mechanism for the polar ZnO(0001)-Zn surface (2003) Phys. Rev., 68
Li, W.-J., Shi, E.-W., Zhong, W.-Z., Yin, Z.-W., Growth mechanism and growth habit of oxide crystals (1999) J. Cryst. Growth, 203, pp. 186-196
Kato, H., Sano, M., Miyamoto, K., Yao, T., High-quality ZnO epilayers grown on Zn-face ZnO substrates by plasma-assisted molecular beam epitaxy (2004) J. Cryst. Growth, 265, pp. 375-381
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.