Vermeire, M.-L.; Soil Science and Environment Geochemistry, Earth & Life Institute, Université catholique de Louvain (UCL), Croix du Sud 2, Louvain-la-Neuve, 1348, Belgium, Department of Biological Sciences, Faculty of Sciences, University of Cape Town (UCT), Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
Bonneville, S.; Biogéochimie et Modélisation du système Terre, Département Géosciences, Environnement et Société (DGES), Université Libre de Bruxelles (ULB), 50 av. F. D. Roosevelt, Brussels, 1050, Belgium
Stenuit, B.; Applied Microbiology Laboratory, Earth & Life Institute, Université catholique de Louvain (UCL), Croix du Sud 2, bte. L07.05.19, Louvain-la-Neuve, B-1348, Belgium, Polytech Montpellier, University of Montpellier, Joint Research Unit of Agropolymer Engineering and Emerging Technologies (IATE, UMR 1208), Montpellier, France
Delvaux, B.; Soil Science and Environment Geochemistry, Earth & Life Institute, Université catholique de Louvain (UCL), Croix du Sud 2, Louvain-la-Neuve, 1348, Belgium
Cornelis, Jean-Thomas ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Echanges Eau-Sol-Plantes
Language :
English
Title :
Is microbial reduction of Fe (III) in podzolic soils influencing C release?
Adhikari, D., Poulson, S.R., Sumaila, S., Dynes, J.J., Mcbeth, J.M., Yang, Y., Asynchronous reductive release of iron and organic carbon from hematite–humic acid complexes. Chem. Geol. 430 (2016), 13–20.
Adhikari, D., Zhao, Q., Das, K., Mejia, J., Huang, R., Wang, X., Poulson, S.R., Tang, Y., Roden, E.E., Yang, Y., Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction. Geochim. Cosmochim. Acta 212 (2017), 221–233.
Aeschbacher, M., Sander, M., Schwarzenbach, R.P., Novel electrochemical approach to assess the redox properties of humic substances. Environ. Sci. Technol. 44 (2009), 87–93.
AFNOR, Qualité du sol - Prétraitement des échantillons pour analyses physico-chimiques. NF ISO 11464, Décembre 2006. 2006.
AGILENT, BioCalculators [online]. Available: https://www.genomics.agilent.com/bioCalcs.jsp. (Accessed 16 August 2018)
Amstaetter, K., Borch, T., Kappler, A., Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe (III) reduction. Geochim. Cosmochim. Acta 85 (2012), 326–341.
Avena, M.J., Koopal, L.K., Desorption of humic acids from an iron oxide surface. Environ. Sci. Technol. 32 (1998), 2572–2577.
Avena, M.J., Koopal, L.K., Kinetics of humic acid adsorption at solid-water interfaces. Environ. Sci. Technol. 33 (1999), 2739–2744.
Baldock, J.A., Skjemstad, J., Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31 (2000), 697–710.
Bascomb, C.L., Distribution of pyrophosphate-extractable iron and organic carbon in soils of various groups. J. Soil Sci. 19 (1968), 251–268.
Bates, D., Maechler, M., Bolker, B., Walker, S., Fitting linear mixed-effects models using lme4. J. Stat. Softw., 67, 2015.
Blakemore, L.C., Searle, P.L., Daly, B.K., Methods for Chemical Analysis of Soils. 1987, New Zealand Soil Bureau, Lower Hutt, N.Z.
Bonneville, S., Kinetics of Microbial Fe (III) Oxyhydroxidereduction: The Role of Mineral Properties. (Ph.D. Dissertation), 2005, Universiteit Utrecht.
Bonneville, S., Vancappellen, P., Behrends, T., Microbial reduction of iron(III) oxyhydroxides: effects of mineral solubility and availability. Chem. Geol. 212 (2004), 255–268.
Bonneville, S., Behrends, T., Van Cappellen, P., Hyacinthe, C., Röling, W.F., Reduction of Fe (III) colloids by Shewanella putrefaciens: a kinetic model. Geochim. Cosmochim. Acta 70 (2006), 5842–5854.
Bonneville, S., Behrends, T., Van Cappellen, P., Solubility and dissimilatory reduction kinetics of iron (III) oxyhydroxides: a linear free energy relationship. Geochim. Cosmochim. Acta 73 (2009), 5273–5282.
Buettner, S.W., Kramer, M.G., Chadwick, O.A., Thompson, A., Mobilization of colloidal carbon during iron reduction in basaltic soils. Geoderma 221-222 (2014), 139–145.
Claessens, J., Van Lith, Y., Laverman, A.M., Van Cappellen, P., Acid–base activity of live bacteria: implications for quantifying cell wall charge. Geochim. Cosmochim. Acta 70 (2006), 267–276.
Cooper, R.E., Eusterhues, K., Wegner, C.-E., Totsche, K.U., Küsel, K., Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia. Biogeosciences, 14, 2017, 5171.
Cornelis, J.-T., Weis, D., Lavkulich, L., Vermeire, M.-L., Delvaux, B., Barling, J., Silicon isotopes record dissolution and re-precipitation of pedogenic clay minerals in a podzolic soil chronosequence. Geoderma 235-236 (2014), 19–29.
Cornelis, J.T., Delvaux, B., Van Ranst, E., Rouxhet, P.G., Sub-micrometer distribution of Fe oxides and organic matter in podzol horizons. Geoderma 323 (2018), 126–135.
Cornell, R.M., Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. 2003, John Wiley & Sons.
Coward, E.K., Thompson, A., Plante, A.F., Contrasting Fe speciation in two humid forest soils: insight into organomineral associations in redox-active environments. Geochim. Cosmochim. Acta 238 (2018), 68–84.
Do Nascimento, N., Bueno, G., Fritsch, E., Herbillon, A., Allard, T., Melfi, A., Astolfo, R., Boucher, H., Li, Y., Podzolization as a deferralitization process: a study of an acrisol–podzol sequence derived from Palaeozoic sandstones in the northern upper Amazon Basin. Eur. J. Soil Sci. 55 (2004), 523–538.
Dong, H., Jaisi, D.P., Kim, J., Zhang, G., Review paper. Microbe-clay mineral interactions. Am. Mineral. 94 (2009), 1505–1519.
Eusterhues, K., Wagner, F.E., Häusler, W., Hanzlik, M., Knicker, H., Totsche, K.U., Kögel-Knabner, I., Schwertmann, U., Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and Mossbauer spectroscopy. Environ. Sci. Technol. 42 (2008), 7891–7897.
Eusterhues, K., Hädrich, A., Neidhardt, J., Küsel, K., Keller, T.F., Jandt, K.D., Totsche, K.U., Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite. Biogeosciences 11 (2014), 4953–4966.
Fiedler, S., Kalbitz, K., Concentrations and properties of dissolved organic matter in forest soils as affected by the redox regime. Soil Sci. 168 (2003), 793–801.
Fox, J., Weisberg, S., An R Companion to Applied Regression. 2nd edn, 2011 (CA, Thousand Oaks).
Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Dong, H., Onstott, T.C., Hinman, N.W., Li, S.-M., Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 62 (1998), 3239–3257.
Fritsch, E., Balan, E., Do Nascimento, N.R., Allard, T., Bardy, M., Bueno, G., Derenne, S., Melfi, A.J., Calas, G., Deciphering the weathering processes using environmental mineralogy and geochemistry: towards an integrated model of laterite and podzol genesis in the Upper Amazon Basin. Compt. Rendus Geosci. 343 (2011), 188–198.
Ginn, B., Meile, C., Wilmoth, J., Tang, Y., Thompson, A., Rapid iron reduction rates are stimulated by high-amplitude redox fluctuations in a tropical forest soil. Environ. Sci. Technol. 51 (2017), 3250–3259.
Glasauer, S., Weidler, P.G., Langley, S., Beveridge, T.J., Controls on Fe reduction and mineral formation by a subsurface bacterium. Geochim. Cosmochim. Acta 67 (2003), 1277–1288.
Grand, S., Lavkulich, L.M., Potential influence of poorly crystalline minerals on soil chemistry in podzols of southwestern Canada. Eur. J. Soil Sci. 64 (2013), 651–660.
Grybos, M., Davranche, M., Gruau, G., Petitjean, P., Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?. J. Colloid Interface Sci. 314 (2007), 490–501.
Grybos, M., Davranche, M., Gruau, G., Petitjean, P., Pédrot, M., Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154 (2009), 13–19.
Haas, J.R., Dichristina, T.J., Effects of Fe (III) chemical speciation on dissimilatory Fe (III) reduction by Shewanella putrefaciens. Environ. Sci. Technol. 36 (2002), 373–380.
Hagedorn, F., Kaiser, K., Feyen, H., Schleppi, P., Effects of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil. J. Environ. Qual. 29 (2000), 288–297.
Hansel, C.M., Benner, S.G., Nico, P., Fendorf, S., Structural constraints of ferric (hydr) oxides on dissimilatory iron reduction and the fate of Fe (II). Geochim. Cosmochim. Acta 68 (2004), 3217–3229.
Hau, H.H., Gralnick, J.A., Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 61 (2007), 237–258.
Hedges, J.I., Keil, R.G., Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49 (1995), 81–115.
Henderson, R., Kabengi, N., Mantripragada, N., Cabrera, M., Hassan, S., Thompson, A., Anoxia-induced release of colloid- and nanoparticle-bound phosphorus in grassland soils. Environ. Sci. Technol. 46 (2012), 11727–11734.
Henneberry, Y.K., Kraus, T.E., Nico, P.S., Horwath, W.R., Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions. Org. Geochem. 48 (2012), 81–89.
Hyacinthe, C., Bonneville, S., Van Cappellen, P., Reactive iron (III) in sediments: chemical versus microbial extractions. Geochim. Cosmochim. Acta 70 (2006), 4166–4180.
Jeanroy, E., Guillet, B., The occurrence of suspended ferruginous particles in pyrophosphate extracts of some soil horizons. Geoderma 26 (1981), 95–105.
Jiang, J., Kappler, A., Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environ. Sci. Technol. 42 (2008), 3563–3569.
Jones, A.M., Collins, R.N., Rose, J., Waite, T.D., The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. Geochim. Cosmochim. Acta 73 (2009), 4409–4422.
Jones, A.R., Sanderman, J., Allen, D., Dalal, R., Schmidt, S., Subtropical giant podzol chronosequence reveals that soil carbon stabilisation is not governed by litter quality. Biogeochemistry 124 (2015), 205–217.
Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B., Matzner, E., Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci. 165 (2000), 277–304.
Kanev, V., Dynamics of acid-soluble iron compounds in soddy-podzolic soils of the southern Komi Republic. Eurasian Soil Sci. 44 (2011), 1201–1214.
Kappler, A., Straub, K.L., Geomicrobiological cycling of Iron. Rev. Mineral. Geochem. 59 (2005), 85–108.
Keiluweit, M., Nico, P.S., Kleber, M., Fendorf, S., Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils?. Biogeochemistry 127 (2016), 157–171.
Kleber, M., Mikutta, R., Torn, M.S., Jahn, R., Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur. J. Soil Sci. 56 (2005), 717–725.
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., Nico, P.S., Chapter one-mineral–organic associations: formation, properties, and relevance in soil environments. Adv. Agron. 130 (2015), 1–140.
Knorr, K.-H., DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths–are DOC exports mediated by iron reduction/oxidation cycles?. Biogeosciences 10 (2013), 891–904.
Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, K., Leinweber, P., Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil Sci. 171 (2008), 61–82.
Kögel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., Kalbitz, K., Kölbl, A., Schloter, M., Biogeochemistry of paddy soils. Geoderma 157 (2010), 1–14.
Kostka, J.E., Stucki, L.J.W., Nealson, K.H., Wu, J., Reduction of structural Fe (III) in smectite by a pure culture of the Fe-reducing bacterium Shewanella putrefaciens strain MR-1. Clay Clay Miner. 44 (1996), 522–529.
Kotloski, N.J., Gralnick, J.A., Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio, 4, 2013 (e00553-12).
Lovley, D., Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. Rosenberg, E., Delong, E.F., Lory, S., Stackebrandt, E., Thompson, F., (eds.) The Prokaryotes: Prokaryotic Physiology and Biochemistry, 2013, Springer Berlin Heidelberg, Berlin, Heidelberg.
Lovley, D., Fraga, J.L., Blunt-Harris, E.L., Hayes, L., Phillips, E., Coates, J.D., Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim. Hydrobiol. 26 (1998), 152–157.
Macdonell, M.T., Colwell, R.R., Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst. Appl. Microbiol. 6 (1985), 171–182.
Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A., Bond, D.R., Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. 105 (2008), 3968–3973.
Mehra, O.P., Jackson, M.L., Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner. 7 (1960), 317–327.
Melton, E.D., Swanner, E.D., Behrens, S., Schmidt, C., Kappler, A., The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 12 (2014), 797–808.
Mikutta, R., Kleber, M., Torn, M.S., Jahn, R., Stabilization of soil organic matter: association with minerals or chemical recalcitrance?. Biogeochemistry 77 (2006), 25–56.
Mikutta, C., Mikutta, R., Bonneville, S., Wagner, F., Voegelin, A., Christl, I., Kretzschmar, R., Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I: characterization. Geochim. Cosmochim. Acta 72 (2008), 1111–1127.
Montes, C.R., Lucas, Y., Pereira, O.J.R., Achard, R., Grimaldi, M., Melfi, A.J., Deep plant-derived carbon storage in Amazonian podzols. Biogeosciences 8 (2011), 113–120.
Moore, T., Dalva, M., Some controls on the release of dissolved organic carbon by plant tissues and soils. Soil Sci. 166 (2001), 38–47.
Nealson, K.H., Myers, C.R., Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl. Environ. Microbiol., 58, 1992, 439.
Nealson, K.H., Saffarini, D., Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48 (1994), 311–343.
Nevin, K.P., Lovley, D.R., Lack of production of electron-shuttling compounds or solubilization of Fe (III) during reduction of insoluble Fe (III) oxide by Geobacter metallireducens. Appl. Environ. Microbiol. 66 (2000), 2248–2251.
Newman, D.K., How bacteria respire minerals. Science 292 (2001), 1312–1313.
J.D., R., Page, J.R., Miller, R.H., Keeney, D.H., Baker, D.E., Roscoe, J.R., (eds.) Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties, 2nd edn, 1982 (Madison, WI).
Pédrot, M., Le Boudec, A., Davranche, M., Dia, A., Henin, O., How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?. J. Colloid Interface Sci. 359 (2011), 75–85.
Poggenburg, C., Mikutta, R., Sander, M., Schippers, A., Marchanka, A., Dohrmann, R., Guggenberger, G., Microbial reduction of ferrihydrite-organic matter coprecipitates by Shewanella putrefaciens and Geobacter metallireducens in comparison to mediated electrochemical reduction. Chem. Geol. 447 (2016), 133–147.
Poggenburg, C., Mikutta, R., Schippers, A., Dohrmann, R., Guggenberger, G., Impact of natural organic matter coatings on the microbial reduction of iron oxides. Geochim. Cosmochim. Acta 224 (2018), 223–248.
Poulton, S.W., Canfield, D.E., Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214 (2005), 209–221.
R Development Core Team, R: A language and environment for statistical computing. 2017, R Foundation for Statistical Computing, Vienna.
Roden, E.E., Kappler, A., Bauer, I., Jiang, J., Paul, A., Stoesser, R., Konishi, H., Xu, H., Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci. 3 (2010), 417–421.
Röling, W.F., Van Breukelen, B.M., Bruggeman, F.J., Westerhoff, H.V., Ecological control analysis: being (s) in control of mass flux and metabolite concentrations in anaerobic degradation processes. Environ. Microbiol. 9 (2007), 500–511.
Rouiller, J., Burtin, G., Souchier, B., La dispersion des sols dans l'analyse granulométrique. Méthode utilisant les résines échangeuses d'ions. Bull. l'ENSAIA Nancy 14 (1972), 194–205.
Royer, R.A., Burgos, W.D., Fisher, A.S., Unz, R.F., Dempsey, B.A., Enhancement of biological reduction of hematite by electron shuttling and Fe (II) complexation. Environ. Sci. Technol. 36 (2002), 1939–1946.
Sauer, D., Sponagel, H., Sommer, M., Giani, L., Jahn, R., Stahr, K., Podzol: soil of the year 2007. A review on its genesis, occurrence, and functions. J. Plant Nutr. Soil Sci. 170 (2007), 581–597.
Schädler, S., Burkhardt, C., Kappler, A., Evaluation of electron microscopic sample preparation methods and imaging techniques for characterization of cell-mineral aggregates. Geomicrobiol J. 25 (2008), 228–239.
Schmidt, M.W., Knicker, H., Kogel-Knabner, I., Organic matter accumulating in Aeh and Bh horizons of a podzol—chemical characterization in primary organo-mineral associations. Org. Geochem. 31 (2000), 727–734.
Schulze, K., Borken, W., Muhr, J., Matzner, E., Stock, turnover time and accumulation of organic matter in bulk and density fractions of a podzol soil. Eur. J. Soil Sci. 60 (2009), 567–577.
Shimizu, M., Zhou, J., Schröder, C., Obst, M., Kappler, A., Borch, T., Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates. Environ. Sci. Technol. 47 (2013), 13375–13384.
Singleton, G.A., Lavkulich, M., A soil chronosequence on beach sands, Vancouver Island, British Columbia. Can. J. Soil Sci. 67 (1987), 795–810.
Siregar, A., Kleber, M., Mikutta, R., Jahn, R., Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents. Eur. J. Soil Sci. 56 (2005), 481–490.
Taillefert, M., Beckler, J.S., Carey, E., Burns, J.L., Fennessey, C.M., Dichristina, T.J., Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides. J. Inorg. Biochem. 101 (2007), 1760–1767.
Thompson, A., The Role of Redox Variability in Structuring Iron Cycling in Soils. 2016, 2016, Goldschmidt, Japan.
Torn, M., Swanston, C., Castanha, C., Trumbore, S., Storage and Turnover of Organic Matter in Soil. Biophysico-chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems. 2009, Wiley, Hoboken, 219–272.
Vermeire, M.-L., Cornu, S., Fekiacova, Z., Detienne, M., Delvaux, B., Cornélis, J.-T., Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chem. Geol. 446 (2016), 163–174.
Vermeire, M.-L., Cornélis, J.-T., Van Ranst, E., Bonneville, S., Doetterl, S., Delvaux, B., Soil microbial populations shift as processes protecting organic matter change during podzolization. Front. Environ. Sci., 6, 2018.
Viollier, E., Inglett, P., Hunter, K., Roychoudhury, A., Van Cappellen, P., The ferrozine method revisited: Fe (II)/Fe (III) determination in natural waters. Appl. Geochem. 15 (2000), 785–790.
Vodyanitskii, Y.N., Vasil'ev, A., Kozheva, A., Sataev, E., Specific features of iron behavior in soddy-podzolic and alluvial gleyed soils of the Middle Cis-Urals region. Eurasian Soil Sci. 39 (2006), 354–366.
Von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., Flessa, H., Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review. Eur. J. Soil Sci. 57 (2006), 426–455.
Von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B., SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 39 (2007), 2183–2207.
Wang, H., Zhu, J., Fu, Q.-L., Xiong, J.-W., Hong, C., Hu, H.-Q., Violante, A., Adsorption of phosphate onto ferrihydrite and ferrihydrite-humic acid complexes. Pedosphere 25 (2015), 405–414.