Vermeire, M.-L.; Soil Science, Earth and Life Institute, Université Catholique de Louvain, Louvain-La-Neuve, Belgium, Department of Biological Sciences, Faculty of Sciences, University of Cape Town, Cape Town, South Africa
Cornelis, Jean-Thomas ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Echanges Eau-Sol-Plantes
Ranst, E. V.; Department of Geology (WE13), Faculty of Sciences, Ghent University, Ghent, Belgium
Bonneville, S.; Biogeochemistry and Earth System Modelling, Department of Geosciences, Environment and Society, Université Libre de Bruxelles, Bruxelles, Belgium
Doetterl, S.; Soil and Water Resources Research, Institute of Geography, Universität Augsburg, Augsburg, Germany, Isotope Bioscience Laboratory ISOFYS, Ghent University, Ghent, Belgium
Delvaux, B.; Soil Science, Earth and Life Institute, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
Language :
English
Title :
Soil microbial populations shift as processes protecting organic matter change during podzolization
AFNOR (2006). Qualité du sol-Prétraitement des Echantillons pour Analyses Physico-Chimiques. La Plaine Saint-Denis. NF ISO 11464, December 2006
Amelung, W., Lobe, I., and Du Preez, C. C. (2002). Fate of microbial residues in sandy soils of the South African Highveld as influenced by prolonged arable cropping. Eur. J. Soil Sci. 53, 29-35. doi: 10.1046/j.1365-2389.2002.00428.x
Amelung, W., Miltner, A., Zhang, X., and Zech, W. (2001). Fate of microbial residues during litter decomposition as affected by minerals. Soil Sci. 166, 598-606. doi: 10.1097/00010694-200109000-00003
Baize, D. (1993). Soil Science Analyses. A Guide to Current Use. Chichester: John Wiley & Sons Ltd
Baldock, J. A., and Broos, K. (2012). "Soil organic matter," in Handbook of Soil Sciences, 2nd, Edn., Vol. 1: Properties and Processes, eds P. M. Huang, Y. Li, and M. E. Sumner (Boca Raton, FL: CRC Press; Taylor & Francis Group), 11.11-11.52
Baldock, J. A., and Skjemstad, J. (2000). Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31, 697-710. doi: 10.1016/S0146-6380(00)00049-8
Bardgett, R. D., and van der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature 515, 505-511. doi: 10.1038/nature13855
Barré, P., Plante, A. F., Cécillon, L., Lutfalla, S., Baudin, F., Bernard, S., et al. (2016). The energetic and chemical signatures of persistent soil organic matter. Biogeochemistry 130, 1-12. doi: 10.1007/s10533-016-0246-0
Bascomb, C. L. (1968). Distribution of pyrophosphate-extractable iron and organic carbon in soils of various groups. J. Soil Sci. 19, 251-268. doi: 10.1111/j.1365-2389.1968.tb01538.x
Basile-Doelsch, I., Balesdent, J., and Rose, J. (2015). Are interactions between organic compounds and nanoscale weathering minerals the key drivers of carbon storage in soils? Environ. Sci. Technol. 49, 3997-3998. doi: 10.1021/acs.est.5b00650
Beare, M., Coleman, D., Crossley, D. Jr., Hendrix, P., and Odum, E. (1995). "A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling" in The Significance and Regulation of Soil Biodiversity, eds H. P. Collins, G. P. Robertson, and M. J. Klug (Dordrecht: Springer), 5-22
Benyarku, C. A., and Stoops, G. (2005). Guidelines for Preparation of Rock And Soil Thin Sections and Polished Sections. Departament de Medi Ambient i Ciències del Sòl, Lleida: Universitat de Lleida
Blakemore, L. C., Searle, P. L., and Daly, B. K. (1987). Methods for Chemical Analysis of Soils. New Zealand Soil Bureau Scientific Report No. 80, Lower Hutt
Bodé, S., Denef, K., and Boeckx, P. (2009). Development and evaluation of a high-performance liquid chromatography/isotope ratio mass spectrometry methodology for delta13C analyses of amino sugars in soil. Rapid Commun. Mass Spectr. 23, 2519-2526. doi: 10.1002/rcm.4093
Bodé, S., Fancy, R., and Boeckx, P. (2013). Stable isotope probing of amino sugars-a promising tool to assess microbial interactions in soils. Rapid Commun. Mass Spectr. 27, 1367-1379. doi: 10.1002/rcm.6586
Bonneville, S., Bray, A. W., and Benning, L. G. (2016). Structural Fe(ii) oxidation in biotite by an ectomycorrhizal fungi drives mechanical forcing. Environ. Sci. Technol. 50, 5589-5596. doi: 10.1021/acs.est.5b06178
Bonneville, S., Morgan, D. J., Schmalenberger, A., Bray, A., Brown, A., Banwart, S. A., et al. (2011). Tree-mycorrhiza symbiosis accelerate mineral weathering: evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochim. Cosmochim. Acta 75, 6988-7005. doi: 10.1016/j.gca.2011.08.041
Bonneville, S., Smits, M. M., Brown, A., Harrington, J., Leake, J. R., Brydson, R., et al. (2009). Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology 37, 615-618. doi: 10.1130/G25699A.1
Boudot, J., Bel Hadj Brahim, A., Steiman, R., and Seigle-Murandi, F. (1989). Biodegradation of synthetic organo-metallic complexes of iron and aluminium with selected metal to carbon ratios. Soil Biol. Biochem. 21, 961-966. doi: 10.1016/0038-0717(89)90088-6
Boudot, J.-P. (1992). Relative efficiency of complexed aluminum noncrystalline Al hydroxide, allophane and imogolite in retarding the biodegradation of citric acid. Geoderma 52, 29-39. doi: 10.1016/0016-7061(92)90073-G
Buurman, P., and Jongmans, A. G. (2005). Podzolisation and soil organic matter dynamics. Geoderma 125, 71-83. doi: 10.1016/j.geoderma.2004.07.006
Buurman, P., van Bergen, P., Jongmans, A., Meijer, E., Duran, B., and van Lagen, B. (2005). Spatial and temporal variation in podzol organic matter studied by pyrolysis-gas chromatography/mass spectrometry and micromorphology. Eur. J. Soil Sci. 56, 253-270. doi: 10.1111/j.1365-2389.2004.00662.x
Chao, T. T., and Sanzolone, R. F. (1992). Decomposition techniques. J. Geochem. Explor. 44, 65-106. doi: 10.1016/0375-6742(92)90048-D
Chenu, C., and Stotzky, G. (2002). "Interactions between microorganisms and soil particles: an overview," in Interactions Between Soil Particles and Microorganisms, eds P. Huang, J. Bollag, and N. Senesi (Manchester: John Wiley & Sons, Ltd.), 1-40
Cornelis, J.-T., Weis, D., Lavkulich, L., Vermeire, M.-L., Delvaux, B., and Barling, J. (2014). Silicon isotopes record dissolution and re-precipitation of pedogenic clay minerals in a podzolic soil chronosequence. Geoderma 235-236, 19-29. doi: 10.1016/j.geoderma.2014.06.023
Cornell, R. M., and Schwertmann, U. (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Weinheim: John Wiley & Sons
Cornu, S., Montagne, D., and Vasconcelos, P. M. (2009). Dating constituent formation in soils to determine rates of soil processes: a review. Geoderma 153, 293-303. doi: 10.1016/j.geoderma.2009.08.006
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 19, 988-995. doi: 10.1111/gcb.12113
De Coninck, F. (1980). Major mechanisms in formation of spodic horizons. Geoderma 24, 101-128. doi: 10.1016/0016-7061(80)90038-5
De Coninck, F., and Righi, D. (1969). Aspects micromorphologiques de la podzolisation en Forêt de Rambouillet. Sci. Sol. 2, 57-77
De Coninck, F., Righi, D., Maucorps, J., and Robin, A. (1974). "Origin and micromorphological nomenclature of organic matter in sandy spodosols," in Soil Microscopy, ed G. K. Rutherford (Kingston, ON: The Limestone Press), 263-280
Ekschmitt, K., Kandeler, E., Poll, C., Brune, A., Buscot, F., Friedrich, M., et al. (2008). Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J. Plant Nutr. Soil Sci. 171, 27-35. doi: 10.1002/jpln.200700051
Ekschmitt, K., Liu, M., Vetter, S., Fox, O., and Wolters, V. (2005). Strategies used by soil biota to overcome soil organic matter stability-why is dead organic matter left over in the soil? Geoderma 128, 167-176. doi: 10.1016/j.geoderma.2004.12.024
Eusterhues, K., Rumpel, C., Kleber, M., and Kögel-Knabner, I. (2003). Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org. Geochem. 34, 1591-1600. doi: 10.1016/j.orggeochem.2003.08.007
Eusterhues, K., Rumpel, C., and Kogel-Knabner, I. (2005). Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores. Eur. J. Soil Sci. 56, 753-763 doi: 10.1111/j.1365-2389.2005.00710.x
Farmer, V., Russell, J., and Berrow, M. (1980). Imogolite and proto-imogolite allophane in spodic horizons: evidence for a mobile aluminium silicate complex in podzol formation. J. Soil Sci. 31, 673-684. doi: 10.1111/j.1365-2389.1980.tb02113.x
Fekiacova, Z., Vermeire, M., Bechon, L., Cornelis, J., and Cornu, S. (2017). Can Fe isotope fractionations trace the pedogenetic mechanisms involved in podzolization? Geoderma 296, 38-46. doi: 10.1016/j.geoderma.2017.02.020
Gadd, G. M. (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111, 3-49. doi: 10.1016/j.mycres.2006.12.001
Gangloff, S., Stille, P., Pierret, M.-C., Weber, T., and Chabaux, F. (2014). Characterization and evolution of dissolved organic matter in acidic forest soil and its impact on the mobility of major and trace elements (case of the Strengbach watershed). Geochim. Cosmochim. Acta 130, 21-41. doi: 10.1016/j.gca.2013.12.033
Glaser, B., Turrión, M. B., and Alef, K. (2004). Amino sugars and muramic acid-biomarkers for soil microbial community structure analysis. Soil Biol. Biochem. 36, 399-407. doi: 10.1016/j.soilbio.2003.10.013
Grandy, A., and Neff, J. (2008). Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci. Total Environ. 404, 297-307. doi: 10.1016/j.scitotenv.2007.11.013
Gustafsson, J., Bhattacharya, P., Bain, D., Fraser, A., and McHardy, W. (1995). Podzolisation mechanisms and the synthesis of imogolite in northern Scandinavia. Geoderma 66, 167-184. doi: 10.1016/0016-7061(95)00005-9
Hassink, J., Bouwman, L., Zwart, K., and Brussaard, L. (1993). Relationships between habitable pore space, soil biota and mineralization rates in grassland soils. Soil Biol. Biochem. 25, 47-55. doi: 10.1016/0038-0717(93)90240-C
Henriet, C., De Jaeger, N., Dorel, M., Opfergelt, S., and Delvaux, B. (2008). The reserve of weatherable primary silicates impacts the accumulation of biogenic silicon in volcanic ash soils. Biogeochemistry 90, 209-223. doi: 10.1007/s10533-008-9245-0
Herbillon, A. J. (1986). "Chemical estimation of weatherable minerals present in the diagnostic horizons of low activity clay soils," in Proceedings of the 8th International Classification Workshop: Classification, Characterization, and Utilization of Ultisols. Part, I, eds M. N. Beinroth, M. N. Camargo, and H. Eswaran (Rio de Janeiro: EMBRAPA), 39-48
Hoffland, E., Giesler, R., Jongmans, T., and van Breemen, N. (2002). Increasing feldspar tunneling by fungi across a north Sweden podzol chronosequence. Ecosystems 5, 11-22. doi: 10.1007/s10021-001-0052-x
IUSS Working Group (2015). World Reference Base for Soil Resources (WRB) 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome: FAO
Jones, A. R., Sanderman, J., Allen, D., Dalal, R., and Schmidt, S. (2015). Subtropical giant podzol chronosequence reveals that soil carbon stabilisation is not governed by litter quality. Biogeochemistry 124, 205-217. doi: 10.1007/s10533-015-0093-4
Jones, D., and Edwards, A. (1998). Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol. Biochem. 30, 1895-1902. doi: 10.1016/S0038-0717(98)00060-1
Jongmans, A., van Breemen, N., Lundström, U., van Hees, P., Finlay, R., Srinivasan, M., et al. (1997). Rock-eating fungi. Nature 389, 682-683. doi: 10.1038/39493
Kaiser, K., and Guggenberger, G. (2007). Sorptive stabilization of organic matter by microporous goethite: sorption into small pores vs. surface complexation. Eur. J. Soil Sci. 58, 45-59. doi: 10.1111/j.1365-2389.2006.00799.x
Kaiser, K., and Kalbitz, K. (2012). Cycling downwards-dissolved organic matter in soils. Soil Biol. Biochem. 52, 29-32. doi: 10.1016/j.soilbio.2012.04.002
Kaiser, K., and Zech, W. (1996). Defects in estimation of aluminum in humus complexes of podzolic soils by pyrophosphate extraction. Soil Sci. 161, 452-458. doi: 10.1097/00010694-199607000-00005
Kalbitz, K., Schwesig, D., Rethemeyer, J., and Matzner, E. (2005). Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol. Biochem. 37, 1319-1331. doi: 10.1016/j.soilbio.2004.11.028
Keiluweit, M., Nico, P., Harmon, M. E., Mao, J., Pett-Ridge, J., and Kleber, M. (2015). Long-term litter decomposition controlled by manganese redox cycling. Proc. Natl. Acad. Sci. U.S.A. 112, E5253-E5260. doi: 10.1073/pnas.1508945112
Kleber, M. (2010). What is recalcitrant soil organic matter? Environ. Chem. 7:320. doi: 10.1071/EN10006
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., and Nico, P. S. (2015). Chapter one-mineral-organic associations: formation, properties, and relevance in soil environments. Adv. Agron. 130, 1-140. doi: 10.1016/bs.agron.2014.10.005
Kleber, M., Mikutta, R., Torn, M. S., and Jahn, R. (2005). Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur. J. Soil Sci. 56, 717-725. doi: 10.1111/j.1365-2389.2005.00706.x
Kleber, M., Sollins, P., and Sutton, R. (2007). A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85, 9-24. doi: 10.1007/s10533-007-9103-5
Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B., et al. (2008a). An integrative approach of organic matter stabilization in temperate soils: linking chemistry, physics, and biology. J. Plant Nutr. Soil Sci. 171, 5-13. doi: 10.1002/jpln.200700215
Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., et al. (2008b). Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil Sci. 171, 61-82. doi: 10.1002/jpln.200700048
Kuzyakov, Y., and Blagodatskaya, E. (2015). Microbial hotspots and hot moments in soil: concept and review. Soil Biol. Biochem. 83, 184-199. doi: 10.1016/j.soilbio.2015.01.025
Lavelle, P., Blanchart, E., Martin, A., Martin, S., and Spain, A. (1993). A hierarchical model for decomposition in terrestrial ecosystems: application to soils of the humid tropics. Biotropica 25, 130-150. doi: 10.2307/2389178
Legros, J. P. (2007). Les Grands sols du Monde. Lausanne: Presses Polytechniques et Universitaires romandes
Lehmann, J., and Kleber, M. (2015). The contentious nature of soil organic matter. Nature 528, 60-68. doi: 10.1038/nature16069
Liang, C., and Balser, T. C. (2011). Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat. Rev. Microbiol. 9, 75-75. doi: 10.1038/nrmicro2386-c1
Liang, C., Fujinuma, R., and Balser, T. C. (2008). Comparing PLFA and amino sugars for microbial analysis in an Upper Michigan old growth forest. Soil Biol. Biochem. 40, 2063-2065. doi: 10.1016/j.soilbio.2008.01.022
Liang, C., Zhang, X., and Balser, T. C. (2007). Net microbial amino sugar accumulation process in soil as influenced by different plant material inputs. Biol. Fertil. Soils 44, 1-7. doi: 10.1007/s00374-007-0170-5
Lindeburg, K. S., Almond, P., Roering, J. J., and Chadwick, O. A. (2013). Pathways of soil genesis in the Coast Range of Oregon, USA. Plant Soil 367, 57-75. doi: 10.1007/s11104-012-1566-z
Lundström, U. S., van Breemen, N., and Bain, D. (2000). The podzolization process. A review. Geoderma 94, 91-107. doi: 10.1016/S0016-7061(99)00036-1
Lundström, U., van Breemen, N., and Jongmans, A. (1995). Evidence for microbial decomposition of organic acids during podzolization. Eur. J. Soil Sci. 46, 489-496. doi: 10.1111/j.1365-2389.1995.tb01345.x
Manzoni, S., and Porporato, A. (2009). Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol. Biochem. 41, 1355-1379. doi: 10.1016/j.soilbio.2009.02.031
Marschner, B., Brodowski, S., Dreves, A., Gleixner, G., Gude, A., Grootes, P. M., et al. (2008). How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 171, 91-110. doi: 10.1002/jpln.200700049
McKeague, J., Ross, G., Gamble, D., and Mahaney, W. (1978). "Properties, criteria of classification and genesis of podzolic soils in Canada," in Quaternary Soils. Geo Abstracts, ed W. C. Mahaney (Norwich), 27-60
Mehra, O. P., and Jackson, M. L. (1960). Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317-327. doi: 10.1346/CCMN.1958.0070122
Mikutta, C., Mikutta, R., Bonneville, S., Wagner, F., Voegelin, A., Christl, I., et al. (2008). Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I: characterization. Geochim. Cosmochim. Acta 72, 1111-1127. doi: 10.1016/j.gca.2007.11.035
Mikutta, R., Kleber, M., and Jahn, R. (2005a). Poorly crystalline minerals protect organic carbon in clay subfractions from acid subsoil horizons. Geoderma 128, 106-115. doi: 10.1016/j.geoderma.2004.12.018
Mikutta, R., Kleber, M., Kaiser, K., and Jahn, R. (2005b). Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Sci. Soc. Am. 69, 120-135. doi: 10.2136/sssaj2005.0120
Mikutta, R., Kleber, M., Torn, M. S., and Jahn, R. (2006). stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77, 25-56. doi: 10.1007/s10533-005-0712-6
Miltner, A., Bombach, P., Schmidt-Brücken, B., and Kästner, M. (2012). SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 41-55. doi: 10.1007/s10533-011-9658-z
Mossin, L., Mortensen, M., and Nørnberg, P. (2002). Imogolite related to podzolization processes in Danish podzols. Geoderma 109, 103-116. doi: 10.1016/S0016-7061(02)00145-3
Neff, J., Townsend, A., Gleixner, G., Lehman, S., Turnbull, J., and Bowman, W. (2002). Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419, 915-917. doi: 10.1038/nature01136
Nikonov, V., Lukina, N., Polyanskaya, L., and Panikova, A. (2001). Distribution of microorganisms in the Al-Fe-humus podzols of natural and anthropogenically impacted boreal spruce forests. Microbiology 70, 319-328. doi: 10.1023/A:1010459512590
Olajuyigbe, S., Tobin, B., Hawkins, M., and Nieuwenhuis, M. (2012). The measurement of woody root decomposition using two methodologies in a Sitka spruce forest ecosystem. Plant Soil 360, 77-91. doi: 10.1007/s11104-012-1222-7
Page, J. R., Miller, R. H., Keeney, D. H., Baker, D. E., Roscoe, J. R., and Rhoades, J. D. (eds.). (1982). Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties, 2nd Edn. Madison, WI: Soil Science Society of America
Poll, C., Ingwersen, J., Stemmer, M., Gerzabek, M. H., and Kandeler, E. (2006). Mechanisms of solute transport affect small-scale abundance and function of soil microorganisms in the detritusphere. Eur. J. Soil Sci. 57, 583-595. doi: 10.1111/j.1365-2389.2006.00835.x
Poulton, S. W., and Canfield, D. E. (2005). Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209-221. doi: 10.1016/j.chemgeo.2004.09.003
Pronk, G. J., Heister, K., and Kögel-Knabner, I. (2015). Amino sugars reflect microbial residues as affected by clay mineral composition of artificial soils. Org. Geochem. 83, 109-113. doi: 10.1016/j.orggeochem.2015.03.007
Rodella, A., and Saboya, L. (1999). Calibration for conductimetric determination of carbon dioxide. Soil Biol. Biochem. 31, 2059-2060. doi: 10.1016/S0038-0717(99)00046-2
Rumpel, C., and Kögel-Knabner, I. (2011). Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant Soil 338, 143-158. doi: 10.1007/s11104-010-0391-5
Sauer, D., Schülli-Maurer, I., Sperstad, R., Sørensen, R., and Stahr, K. (2008). Podzol development with time in sandy beach deposits in southern Norway. J. Plant Nutr. Soil Sci. 171, 483-497. doi: 10.1002/jpln.200700023
Schmidt, M. W., Knicker, H., and Kogel-Knabner, I. (2000). Organic matter accumulating in Aeh and Bh horizons of a Podzol-chemical characterization in primary organo-mineral associations. Org. Geochem. 31, 727-734. doi: 10.1016/S0146-6380(00)00045-0
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., et al. (2011). Persistence of soil organic matter as an ecosystem property. Nature 478, 49-56. doi: 10.1038/nature10386
Schuppli, P., Ross, G., and McKeague, J. (1983). The effective removal of suspended materials from pyrophosphate extracts of soils from tropical and temperate regions. Soil Sci. Soc. Am. J. 47, 1026-1032. doi: 10.2136/sssaj1983.03615995004700050037x
Simpson, A. J., Simpson, M. J., Smith, E., and Kelleher, B. P. (2007). Microbially derived inputs to soil organic matter: are current estimates too low? Environ. Sci. Technol. 41, 8070-8076. doi: 10.1021/es071217x
Singleton, G. A., and Lavkulich, M. (1987). A soil chronosequence on beach sands, Vancouver Island, British Columbia. Can. J. Soil Sci. 67, 795-810. doi: 10.4141/cjss87-077
Siregar, A., Kleber, M., Mikutta, R., and Jahn, R. (2005). Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents. Eur. J. Soil Sci. 56, 481-490. doi: 10.1111/j.1365-2389.2004.00680.x
Six, J., Bossuyt, H., Degryze, S., and Denef, K. (2004). A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7-31. doi: 10.1016/j.still.2004.03.008
Slankis, V. (1974). Soil factors influencing formation of mycorrhizae. Annu. Rev. Phytopathol. 12, 437-457. doi: 10.1146/annurev.py.12.090174.002253
Smits, M. M., Hoffland, E., Jongmans, A. G., and van Breemen, N. (2005). Contribution of mineral tunneling to total feldspar weathering. Geoderma 125, 59-69. doi: 10.1016/j.geoderma.2004.06.005
Sollins, P., Homann, P., and Caldwell, B. (1996). Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74, 65-105. doi: 10.1016/S0016-7061(96)00036-5
Sollins, P., Kramer, M. G., Swanston, C., Lajtha, K., Filley, T., Aufdenkampe, A. K., et al. (2009). Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial-and mineral-controlled soil organic matter stabilization. Biogeochemistry 96, 209-231. doi: 10.1007/s10533-009-9359-z
Stoops, G. (2003). Guidelines for Analysis and Description of Soil And Regolith Thin Sections. Madison, WI: Soil Science Society of America Inc
Theodorou, C. (1978). Soil moisture and the mycorrhizal association of Pinus radiata D. Don. Soil Biol. Biochem. 10, 33-37. doi: 10.1016/0038-0717(78)90007-X
Tisdall, J., and Oades, J. M. (1982). Organic matter and water-stable aggregates in soils. J. Soil Sci. 33, 141-163. doi: 10.1111/j.1365-2389.1982.tb01755.x
Torn, M., Swanston, C., Castanha, C., and Trumbore, S. (2009). "Storage and turnover of organic matter in soil," in Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems, eds N. Senesi, B. Xing, and P. M. Huang (Hoboken, NJ: Wiley), 219-272
Totsche, K. U., Rennert, T., Gerzabek, M. H., Kögel-Knabner, I., Smalla, K., Spiteller, M., et al. (2010). Biogeochemical interfaces in soil: the interdisciplinary challenge for soil science. J. Plant Nutr. Soil Sci. 173, 88-99. doi: 10.1002/jpln.200900105
van Breemen, N., Finlay, R., Lundström, U., Jongmans, A. G., Giesler, R., and Olsson, M. (2000b). Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry 49, 53-67. doi: 10.1023/A:1006256231670
van Breemen, N., Lundström, U. S., and Jongmans, A. G. (2000a). Do plants drive podzolization via rock-eating mycorrhizal fungi? Geoderma 94, 163-171. doi: 10.1016/S0016-7061(99)00050-6
van Breemen, N., Mulder, J., and Driscoll, C. (1983). Acidification and alkalinization of soils. Plant Soil 75, 283-308. doi: 10.1007/BF02369968
van Hees, P. A. W., Lundström, U. S., and Giesler, R. (2000). Low molecular weight organic acids and their Al-complexes in soil solution-composition, distribution and seasonal variation in three podzolized soils. Geoderma 94(2-4), 173-200. doi: 10.1016/S0016-7061(98)00140-2
van Hees, P., Godbold, D., Jentschke, G., and Jones, D. (2003). Impact of ectomycorrhizas on the concentration and biodegradation of simple organic acids in a forest soil. Eur. J. Soil Sci. 54, 697-706. doi: 10.1046/j.1351-0754.2003.0561.x
Vermeire, M.-L., Cornu, S., Fekiacova, Z., Detienne, M., Delvaux, B., and Cornélis, J.-T. (2016). Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chem. Geol. 446, 163-174. doi: 10.1016/j.chemgeo.2016.06.008
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., et al. (2007). SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 39, 2183-2207. doi: 10.1016/j.soilbio.2007.03.007
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., et al. (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review. Eur. J. Soil Sci. 57, 426-455. doi: 10.1111/j.1365-2389.2006.00809.x
von Lützow, M., Kögel-Knabner, I., Ludwig, B., Matzner, E., Flessa, H., Ekschmitt, K., et al. (2008). Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J. Plant Nutr. Soil Sci. 171, 111-124. doi: 10.1002/jpln.200700047
Wallander, H., Nilsson, L. O., Hagerberg, D., and Rosengren, U. (2003). Direct estimates of C: N ratios of ectomycorrhizal mycelia collected from Norway spruce forest soils. Soil Biol. Biochemi. 35, 997-999. doi: 10.1016/S0038-0717(03)00121-4
Zhang, X., and Amelung, W. (1996). Gas chromatograph1c determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol. Biochem. 28, 1201-1206. doi: 10.1016/0038-0717(96)00117-4
Zimmermann, M., Leifeld, J., Abiven, S., Schmidt, M. W., and Fuhrer, J. (2007). Sodium hypochlorite separates an older soil organic matter fraction than acid hydrolysis. Geoderma 139, 171-179. doi: 10.1016/j.geoderma.2007.01.014