Houben, D.; UniLaSalle, HydrISE, 19, rue Pierre Waguet, Beauvais cedex, F-60026, France
Hardy, B.; Université catholique de Louvain, Earth and Life Institute – Environmental Sciences, Croix du Sud, 2 bte L7.05.10, Louvain-la-Neuve, BE-1348, Belgium
Faucon, Michel-Pierre; UniLaSalle, HydrISE, 19, rue Pierre Waguet, Beauvais cedex, F-60026, France
Cornelis, Jean-Thomas ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Echanges Eau-Sol-Plantes
Language :
French
Title :
Effet du biochar sur la biodisponibilité du phosphore dans un sol limoneux acide
Alternative titles :
[en] Effect of biochar on phosphorus bioavailability in an acidic silt loam soil
Publication date :
2017
Journal title :
Biotechnologie, Agronomie, Société et Environnement
Atienza-Martínez M. et al., 2014. Phosphorus recovery from sewage sludge char ash. Biomass Bioenergy, 65, 42-50.
Azuara M., Kersten S.R.A. & Kootstra A.M.J., 2013. Recycling phosphorus by fast pyrolysis of pig manure: concentration and extraction of phosphorus combined with formation of value-added pyrolysis products. Biomass Bioenergy, 49, 171-180.
Biederman L.A. & Harpole W.S., 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy, 5, 202-214.
Boulaine J., 2006. Histoire de la fertilisation phosphatée. Étude Gestion Sols, 13, 129-137.
Chan K.Y. & Xu Z., 2009. Biochar: nutrient properties and their enhancement. In: Lehmann J. & Joseph S., eds. Biochar for environmental management - Science and technology. London: Earthscan, 67-84.
Chao T.T. & Sanzolone R.F., 1992. Decomposition techniques. J. Geochem. Explor., 44, 65-106.
Chintala R. et al., 2014. Phosphorus sorption and availability from biochars and soil/biochar mixtures. Clean, 42, 626-634.
Cong P.T. & Merckx R., 2005. Improving phosphorus availability in two upland soils of Vietnam using Tithonia diversifolia H. Plant Soil, 269, 11-23.
Cordell D., Drangert J.-O. & White S., 2009. The story of phosphorus: global food security and food for thought. Global Environ. Change, 19, 292-305.
DeLuca T.H., MacKenzie M.D. & Gundale M.J., 2009. Biochar effects on soil nutrient transformations. In: Lehmann J. & Joseph S., eds. Biochar for environmental management - Science and technology. London: Earthscan, 251-270.
Devau N. et al., 2009. Soil pH controls the environmental availability of phosphorus: experimental and mechanistic modelling approaches. Appl. Geochem., 24, 2163-2174.
Devau N., Le Cadre E., Hinsinger P. & Gérard F., 2010. A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability. Ann. Bot., 105, 1183-1197.
Faucon M.-P. et al., 2015. Advances and perspectives to improve the phosphorus availability in cropping systems for agroecological phosphorus management. Adv. Agron., 134, 51-79.
Fixen P.E. & Johnston A.M., 2012. World fertilizer nutrient reserves: a view to the future. J. Sci. Food Agric., 92, 1001-1005.
Gaunt J.L. & Lehmann J., 2008. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ. Sci. Technol., 42, 4152-4158.
Gérard F., 2016. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils — A myth revisited. Geoderma, 262, 213-226.
Hardy B. et al., 2016. The effect of pre-industrial charcoal kilns on chemical properties of forest soil of Wallonia, Belgium. Eur. J. Soil Sci., 67, 206-216.
Hardy B. et al., 2017. Evaluation of the long‐term effect of biochar on properties of temperate agricultural soil at pre‐industrial charcoal kiln sites in Wallonia, Belgium. Eur. J. Soil Sci., 68, 80-89.
Hass A. et al., 2012. Chicken manure biochar as liming and nutrient source for acid Appalachian soil. J. Environ. Qual., 41, 1096-1106.
Houba V.J.G., Temminghoff E.J.M., Gaikhorst G.A. & van Vark W., 2000. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun. Soil Sci. Plant Anal., 31, 1299-1396.
Houben D., Meunier C., Pereira B. & Sonnet P., 2011. Predicting the degree of phosphorus saturation using the ammonium acetate–EDTA soil test. Soil Use Manage., 27, 283-293.
Houben D., Evrard L. & Sonnet P., 2013a. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy, 57, 196-204.
Houben D., Evrard L. & Sonnet P., 2013b. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92, 1450-1457.
Houben D., Sonnet P. & Cornelis J.-T., 2014. Biochar from Miscanthus: a potential silicon fertilizer. Plant Soil, 374, 871-882.
Houben D. & Sonnet P., 2015. Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere, 139, 644-651.
Jeffery S., Verheijen F.G.A., van der Velde M. & Bastos A.C., 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ., 144, 175-187.
Jin Y. et al., 2016. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: a microcosm incubation study. Chemosphere, 142, 128-135.
Joseph S.D. et al., 2010. An investigation into the reactions of biochar in soil. Soil Res., 48, 501-515.
Kookana R.S. et al., 2011. Biochar application to soil: agronomic and environmental benefits and unintended consequences. In: Sparks D.L., ed. Advances in Agronomy. Vol. 112. London: Academic Press, 103-143.
Lehmann J., 2007. A handful of carbon. Nature, 447, 143-144.
Lehmann J., Gaunt J. & Rondon M., 2006. Biochar sequestration in terrestrial ecosystems – A review. Mitigation Adaptation Strategies Global Change, 11, 395-419.
Lehmann J. & Joseph S., 2009. Biochar for environmental management - an introduction. In: Lehmann J. & Joseph S., eds. Biochar for environmental management - Science and technology. London: Earthscan, 1-12.
Lehmann J. et al., 2011. Biochar effects on soil biota – A review. Soil Biol. Biochem., 43, 1812-1836.
Lide D.R., 2004. CRC Handbook of chemistry and physics. 85th ed. Boca Raton, FL, USA: CRC Press.
Manyà J.J., 2012. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ. Sci. Technol., 46, 7939-7954.
McDowell R.W. et al., 2002. Analysis of potentially mobile phosphorus in arable soils using solid state nuclear magnetic resonance. J. Environ. Qual., 31, 450-456.
McDowell R.W. & Sharpley A.N., 2003. Phosphorus solubility and release kinetics as a function of soil test P concentration. Geoderma, 112, 143-154.
McDowell R.W., Mahieu N., Brookes P.C. & Poulton P.R., 2003. Mechanisms of phosphorus solubilisation in a limed soil as a function of pH. Chemosphere, 51, 685-692.
Murrmann R.P. & Peech M., 1969. Effect of pH on labile and soluble phosphate in soils. Soil Sci. Soc. Am. J., 33, 205.
Novak J.M. et al., 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci., 174, 105-112.
Ohno T. & Crannell B.S., 1996. Green and animal manure-derived dissolved organic matter effects on phosphorus sorption. J. Environ. Qual., 25, 1137.
Parvage M.M. et al., 2013. Phosphorus availability in soils amended with wheat residue char. Biol. Fertil. Soils, 49, 245-250.
Rees F., Simonnot M.O. & Morel J.L., 2014. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur. J. Soil Sci., 65, 149-161.
Renneson M. et al., 2015. Degree of phosphorus saturation in agricultural loamy soils with a near-neutral pH. Eur. J. Soil Sci., 66, 33-41.
Rodella A.A. & Saboya L.V., 1999. Calibration for conductimetric determination of carbon dioxide. Soil Biol. Biochem., 31, 2059-2060.
Schneider F. & Haderlein S.B., 2016. Potential effects of biochar on the availability of phosphorus – mechanistic insights. Geoderma, 277, 83-90.
Sohi S.P., Krull E., Lopez-Capel E. & Bol R., 2010. A review of biochar and its use and function in soil. In: Sparks D.L., ed. Advances in Agronomy. Vol. 105. London: Academic Press, 47-82.
Van Vuuren D.P., Bouwman A.F. & Beusen A.H.W., 2010. Phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion. Global Environ. Change, 20, 428-439.
Verheijen F.G.A. et al., 2010. Biochar application to soils - a critical scientific review of effects on soil properties, processes and functions. Luxembourg: European Commission.
Xu G., Sun J., Shao H. & Chang S.X., 2014. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol. Eng., 62, 54-60.
Yaman S., 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manage., 45, 651-671.
Yuan J.-H., Xu R.-K. & Zhang H., 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol., 102, 3488-3497.
Zhai L. et al., 2015. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biol. Fertil. Soils, 51, 113-122.