[en] We present an overview of two Martian years oxygen dayglow limb observations of the
ultraviolet (UV) emissions at 130.4 nm and 135.6 nm. The data have been collected with the
IUVS instrument on board the MAVEN spacecraft. We use solar flux measurements of EUVM
on board MAVEN to remove the solar induced variation and show the variations of the
maximum limb brightness and altitude with season, SZA and latitude, which reflects the
strong variability of the Martian atmosphere. The 130.4 and 135.6 nm peak brightness and
altitudes are strongly correlated and behave similarly. Both emissions are modeled for
selected data using Monte Carlo codes to calculate emissions arising from electron impact
on O and CO2. Additional radiative transfer calculations are made to analyze the optically
thick 130.4 nm emission. Model atmospheres from the Mars Climate Database serve as
input. Both simulated limb profiles are in good agreement with the observations despite
some deviations. We furthermore show that the observed 130.4 nm brightness is dominated
by resonance scattering of the solar multiplet with a contribution (15-20%) by electron
impact on O. Over 95% of the excitation at 135.6 nm arises from electron impact on O.
Simulations indicate that the limb brightness is dependent on the oxygen and CO2 content,
while the peak emission altitude is mainly driven by the CO2 content because of absorption
processes. We deduce [O]/[CO2] mixing ratios of 3.1% and 3.0% at 130 km for datasets
collected at LS=350° in Martian years 32 and 33.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Ritter, Birgit ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Gkouvelis, Leonardos ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Jain, S.K.
Schneider, N.
Language :
English
Title :
Characteristics of Mars UV dayglow emissions from atomic oxygen at 130.4 and 135.6 nm: MAVEN/IUVS limb observations and modeling.
Publication date :
April 2019
Journal title :
Journal of Geophysical Research. Space Physics
ISSN :
2169-9380
eISSN :
2169-9402
Publisher :
Wiley, Hoboken, United States - New Jersey
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
SCOP - NOMAD
Funders :
Politique Scientifique Fédérale (Belgique) - BELSPO European Space Agency -PRODEX Fédération Wallonie Bruxelles. Fonds de la Recherche Scientifique - F.R.S.-FNRS
Ajello, J. M. (1971a). Emission cross sections of CO by electron impact in the interval 1260–5000 Å. I. The Journal of Chemical Physics, 55(7), 3158–3168. https://doi.org/10.1063/1.1676563
Ajello, J. M. (1971b). Emission cross sections of CO2 by electron impact in the interval 1260–4500 Å. II. The Journal of Chemical Physics, 55(7), 3169–3177. https://doi.org/10.1063/1.1676564
Ajello, J. M., Malone, C. P., Evans, J. S., Holsclaw, G. M., Hoskins, A. C., Jain, S. K., McClintock, W. E., Liu, X., Veibell, V., Deighan, J., & Gérard, J. C. (2019). UV Study of the fourth positive band system of CO and OI 135.6 nm from electron impact on CO and CO2. Journal of Geophysical Research: Space Physics, 124, 2954–2977. https://doi.org/10.1029/2018JA026308
Barth, C. A. (1974). The atmosphere of Mars. Annual Review of Earth and Planetary Sciences, 2(1), 333–367. https://doi.org/10.1146/annurev.ea.02.050174.002001
Barth, C. A., Hord, C. W., Pearce, J. B., Kelly, K. K., Anderson, G. P., & Stewart, A. I. (1971). Mariner 6 and 7 Ultraviolet Spectrometer Experiment: Upper atmosphere data. Journal of Geophysical Research, 76(10), 2213–2227. https://doi.org/10.1029/JA076i010p02213
Bougher, S. W., Cravens, T. E., Grebowsky, J., & Luhmann, J. (2014). The aeronomy of Mars: Characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape. Space Science Reviews, 195(1-4), 423–456. https://doi.org/10.1007/s11214-014-0053-7
Bougher, S. W., Engel, S., Roble, R. G., & Foster, B. (2000). Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices. Journal of Geophysical Research, 105(E7), 17,669–17,692. https://doi.org/10.1029/1999JE001232
Bougher, S., Jakosky, B., Halekas, J., Grebowsky, J., Luhmann, J., Mahaffy, P., Connerney, J., Eparvier, F., Ergun, R., Larson, D., McFadden, J., Mitchell, D., Schneider, N., Zurek, R., Mazelle, C., Andersson, L., Andrews, D., Baird, D., Baker, D. N., Bell, J. M., Benna, M., Brain, D., Chaffin, M., Chamberlin, P., Chaufray, J.-Y., Clarke, J., Collinson, G., Combi, M., Crary, F., Cravens, T., Crismani, M., Curry, S., Curtis, D., Deighan, J., Delory, G., Dewey, R., DiBraccio, G., Dong, C., Dong, Y., Dunn, P., Elrod, M., England, S., Eriksson, A., Espley, J., Evans, S., Fang, X., Fillingim, M., Fortier, K., Fowler, C. M., Fox, J., Gröller, H., Guzewich, S., Hara, T., Harada, Y., Holsclaw, G., Jain, S. K., Jolitz, R., Leblanc, F., Lee, C. O., Lee, Y., Lefevre, F., Lillis, R., Livi, R., Lo, D., Ma, Y., Mayyasi, M., McClintock, W., McEnulty, T., Modolo, R., Montmessin, F., Morooka, M., Nagy, A., Olsen, K., Peterson, W., Rahmati, A., Ruhunusiri, S., Russell, C. T., Sakai, S., Sauvaud, J.-A., Seki, K., Steckiewicz, M., Stevens, M., Stewart, A. I. F., Stiepen, A., Stone, S., Tenishev, V., Thiemann, E., Tolson, R., Toublanc, D., Vogt, M., Weber, T., Withers, P., Woods, T., & Yelle, R. (2015). Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 350(6261), aad0459. https://doi.org/10.1126/science.aad0459
Bougher, S. W., & Roble, R. G. (1991). Comparative terrestrial planet thermospheres 1. Solar cycle variation of global mean temperatures. Journal of Geophysical Research, 96(A7), 11,045. https://doi.org/10.1029/91JA01162
Bougher, S. W., Roeten, K. J., Olsen, K., Mahaffy, P. R., Benna, M., Elrod, M., Jain, S. K., Schneider, N. M., Deighan, J., Thiemann, E., Eparvier, F. G., Stiepen, A., & Jakosky, B. M. (2017). The structure and variability of Mars dayside thermosphere from MAVEN/NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. Journal of Geophysical Research: Space Physics, 122, 1296–1313. https://doi.org/10.1002/2016JA023454
Chaufray, J. Y., Deighan, J., Chaffin, M. S., Schneider, N. M., McClintock, W. E., Stewart, A. I. F., Jain, S. K., Crismani, M., Stiepen, A., Holsclaw, G. M., Clarke, J. T., Montmessin, F., Eparvier, F. G., Thiemann, E. M. B., Chamberlin, P. C., & Jakosky, B. M. (2015). Study of the Martian cold oxygen corona from the O I 130.4 nm by IUVS/MAVEN. Geophysical Research Letters, 42, 9031–9039. https://doi.org/10.1002/2015GL065341
Chaufray, J.-Y., Deighan, J., Stewart, A. I. F., Schneider, N., Clarke, J., Leblanc, F., & Jakosky, B. (2016). Effect of the planet shine on the corona: Application to the Martian hot oxygen. Journal of Geophysical Research: Space Physics, 121, 11,413–11,421. https://doi.org/10.1002/2016ja023273
Chaufray, J. Y., Leblanc, F., Quémerais, E., & Bertaux, J. L. (2009). Martian oxygen density at the exobase deduced from O I 130.4-nm observations by Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars on Mars Express. Journal of Geophysical Research, 114, E02006. https://doi.org/10.1029/2008JE003130
Curdt, W., Brekke, P., Feldman, U., Wilhelm, K., Dwivedi, B. N., Schühle, U., & Lemaire, P. (2001). The SUMER spectral atlas of solar-disk features. Astronomy and Astrophysics, 375(2), 591–613. https://doi.org/10.1051/0004-6361:20010364
Deighan, J., Chaffin, M. S., Chaufray, J. Y., Stewart, A. I. F., Schneider, N. M., Jain, S. K., Stiepen, A., Crismani, M., McClintock, W. E., Clarke, J. T., Holsclaw, G. M., Montmessin, F., Eparvier, F. G., Thiemann, E. M. B., Chamberlin, P. C., & Jakosky, B. M. (2015). MAVEN IUVS observation of the hot oxygen corona at Mars. Geophysical Research Letters, 42, 9009–9014. https://doi.org/10.1002/2015GL065487
Donahue, T. M. (1966). Upper atmosphere and ionosphere of Mars. Science, 152(3723), 763–764. https://doi.org/10.1126/science.152.3723.763
Eparvier, F. G., Chamberlin, P. C., Woods, T. N., & Thiemann, E. M. B. (2015). The solar extreme ultraviolet monitor for MAVEN. Space Science Reviews, 195(1-4), 293–301. https://doi.org/10.1007/s11214-015-0195-2
Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S. R., Read, P. L., & Huot, J. P. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104(E10), 24,155–24,175. https://doi.org/10.1029/1999JE001025
Fox, J. L., & Dalgarno, A. (1979). ionization, luminosity, and heating of the upper atmosphere of Mars. Journal of Geophysical Research, 84(A12), 7315. https://doi.org/10.1029/JA084iA12p07315
Fox, J. L., Johnson, A. S., Ard, S. G., Shuman, N. S., & Viggiano, A. A. (2017). Photochemical determination of O densities in the Martian thermosphere: Effect of a revised rate coefficient. Geophysical Research Letters, 44, 8099–8106. https://doi.org/10.1002/2017GL074562
Gentieu, E. P., & Mentall, J. E. (1973). Cross sections for production of the CO(A1Π−X1Σ) fourth positive band system and O(3S) by photodissociation of CO2. The Journal of Chemical Physics, 58(11), 4803–4815. https://doi.org/10.1063/1.1679063
Gérard, J.-C., Hubert, B., Shematovich, V. I., Bisikalo, D. V., & Gladstone, G. R. (2008). The Venus ultraviolet oxygen dayglow and aurora: Model comparison with observations. Planetary and Space Science, 56(3-4), 542–552. https://doi.org/10.1016/j.pss.2007.11.008
Gkouvelis, L., Gérard, J.-C., Ritter, B., Hubert, B., Schneider, N., & Jain, S. (2018). The O(1S) 297.2 nm dayglow emission: A tracer of CO2 density variations in the Martian lower thermosphere. Journal of Geophysical Research: Planets, 123, 3119–3132. https://doi.org/10.1029/2018JE005709
Gladstone, G. R. (1985). Radiative transfer of resonance lines with internal sources. Journal of Quantitative Spectroscopy and Radiation Transfer, 33(5), 453–458. https://doi.org/10.1016/0022-4073(85)90131-1
Gladstone, G. R. (1988). UV resonance line dayglow emissions on Earth and Jupiter. Journal of Geophysical Research, 93(A12), 14,623. https://doi.org/10.1029/JA093iA12p14623
Gladstone, G. R. (1992). Solar OI 1304 A triplet line profiles. Journal of Geophysical Research, 97, 19,125–19,519. https://doi.org/10.1029/92JA00991
González-Galindo, F., Forget, F., López-Valverde, M. A., Angelats, I., Coll, M., & Millour, E. (2009). A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. Journal of Geophysical Research, 114, E04001. https://doi.org/10.1029/2008JE003246
González-Galindo, F., López-Valverde, M. A., Forget, F., García-Comas, M., Millour, E., & Montabone, L. (2015). Variability of the Martian thermosphere during eight Martian years as simulated by a ground-to-exosphere global circulation model. Journal of Geophysical Research: Planets, 120, 2020–2035. https://doi.org/10.1002/2015JE009425
Green, A. E. S., & Stolarski, R. S. (1972). Analytic models of electron impact excitation cross sections. Journal of Atmospheric and Terrestrial Physics, 34(10), 1703–1717. https://doi.org/10.1016/0021-9169(72)90030-X
Hanson, W. B., Sanatani, S., & Zuccaro, D. R. (1977). The Martian ionosphere as observed by the Viking retarding potential analyzers. Journal of Geophysical Research, 82(28), 4351–4363. https://doi.org/10.1029/JS082i028p04351
Hubert, B., Gérard, J.-C., Gustin, J., Shematovich, V. I., Bisikalo, D. V., Stewart, A. I., & Gladstone, G. R. (2010). UVIS observations of the FUV OI and CO 4P Venus dayglow during the Cassini flyby. Icarus, 207(2), 549–557. https://doi.org/10.1016/j.icarus.2009.12.029
Hubert, B., Gérard, J.-C., Shematovich, V. I., Bisikalo, D. V., Chakrabarti, S., & Gladstone, G. R. (2015). Nonthermal radiative transfer of oxygen 98.9 nm ultraviolet emission: Solving an old mystery. Journal of Geophysical Research: Space Physics, 120, 10,772–10,792. https://doi.org/10.1002/2014JA020835
Huebner, W. F., Keady, J. J., & Lyon, S. P. (1992). Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophysics and Space Science, 195(1), 1–294. https://doi.org/10.1007/BF00644558
Itikawa, Y. (2002). Cross sections for electron collisions with carbon dioxide. Journal of Physical and Chemical Reference Data, 31(3), 749–767. https://doi.org/10.1063/1.1481879
Jackman, C. H., Garvey, R. H., & Green, A. E. S. (1977). Electron impact on atmospheric gases I: Updated cross sections. Journal of Geophysical Research, 82(32), 5081–5090. https://doi.org/10.1029/JA082i032p05081
Jain, S. K., Stewart, A. I. F., Schneider, N. M., Deighan, J., Stiepen, A., Evans, J. S., Stevens, M. H., Chaffin, M. S., Crismani, M., McClintock, W. E., Clarke, J. T., Holsclaw, G. M., Lo, D. Y., Lefèvre, F., Montmessin, F., Thiemann, E. M. B., Eparvier, F., & Jakosky, B. M. (2015). The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophysical Research Letters, 42, 9023–9030. https://doi.org/10.1002/2015GL065419
Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., Baird, D., Baker, D., Bartlett, R., Benna, M., Bougher, S., Brain, D., Carson, D., Cauffman, S., Chamberlin, P., Chaufray, J. Y., Cheatom, O., Clarke, J., Connerney, J., Cravens, T., Curtis, D., Delory, G., Demcak, S., DeWolfe, A., Eparvier, F., Ergun, R., Eriksson, A., Espley, J., Fang, X., Folta, D., Fox, J., Gomez-Rosa, C., Habenicht, S., Halekas, J., Holsclaw, G., Houghton, M., Howard, R., Jarosz, M., Jedrich, N., Johnson, M., Kasprzak, W., Kelley, M., King, T., Lankton, M., Larson, D., Leblanc, F., Lefevre, F., Lillis, R., Mahaffy, P., Mazelle, C., McClintock, W., McFadden, J., Mitchell, D. L., Montmessin, F., Morrissey, J., Peterson, W., Possel, W., Sauvaud, J. A., Schneider, N., Sidney, W., Sparacino, S., Stewart, A. I. F., Tolson, R., Toublanc, D., Waters, C., Woods, T., Yelle, R., & Zurek, R. (2015). The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Space Science Reviews, 195(1-4), 3–48. https://doi.org/10.1007/s11214-015-0139-x
Johnson, P. V., Kanik, I., Shemansky, D. E., & Liu, X. (2003). Electron-impact cross sections of atomic oxygen. Journal of Physics B: Atomic, Molecular and Optical Physics, 36(15), 3203–3218. https://doi.org/10.1088/0953-4075/36/15/303
Leblanc, F., Chaufray, J. Y., Lilensten, J., Witasse, O., & Bertaux, J.-L. (2006). Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. Journal of Geophysical Research, 111, E09S11. https://doi.org/10.1029/2005JE002664
Leblanc, F., Chaufray, J. Y., Modolo, R., Leclercq, L., Curry, S., Luhmann, J., Lillis, R., Hara, T., McFadden, J., Halekas, J., Schneider, N., Deighan, J., Mahaffy, P. R., Benna, M., Johnson, R. E., Gonzalez-Galindo, F., Forget, F., Lopez-Valverde, M. A., Eparvier, F. G., & Jakosky, B. (2017). On the Origins of Mars’ Exospheric Nonthermal Oxygen Component as Observed by MAVEN and Modeled by HELIOSARES. Journal of Geophysical Research: Planets, 122, 2401–2428. https://doi.org/10.1002/2017je005336
Lee, Y., Combi, M. R., Tenishev, V., Bougher, S. W., & Lillis, R. J. (2015). Hot oxygen corona at Mars and the photochemical escape of oxygen: Improved description of the thermosphere, ionosphere, and exosphere. Journal of Geophysical Research: Planets, 120, 1880–1892. https://doi.org/10.1002/2015JE004890
Mahaffy, P. R., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., Bendt, M., Carrigan, D., Errigo, T., Holmes, V., Johnson, C. S., Kellogg, J., Kimvilakani, P., Lefavor, M., Hengemihle, J., Jaeger, F., Lyness, E., Maurer, J., Melak, A., Noreiga, F., Noriega, M., Patel, K., Prats, B., Raaen, E., Tan, F., Weidner, E., Gundersen, C., Battel, S., Block, B. P., Arnett, K., Miller, R., Cooper, C., Edmonson, C., & Nolan, J. T. (2015). The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission. Space Science Reviews, 195(1-4), 49–73. https://doi.org/10.1007/s11214-014-0091-1
Mason, N. J. (1990). Measurement of the lifetime of metastable species by electron impact dissociation of molecules. Measurement Science and Technology, 1(7), 596–600. https://doi.org/10.1088/0957-0233/1/7/009
McClintock, W. E., Schneider, N. M., Holsclaw, G. M., Clarke, J. T., Hoskins, A. C., Stewart, I., Montmessin, F., Yelle, R. V., & Deighan, J. (2015). The imaging ultraviolet spectrograph (IUVS) for the MAVEN mission. Space Science Reviews, 195(1-4), 75–124. https://doi.org/10.1007/s11214-014-0098-7
McElroy, M. B. (1967). The upper atmosphere of Mars. Astrophysical Journal, 150, 1125. https://doi.org/10.1086/149409
Millour, E., Forget, F., González-Galindo, F., Spiga, A., Lebonnois, S., Lewis, S.R., Montabone, L., Read, P.L., López-Valverde, M.A., Gilli, G. and Lefèvre, F., 2009. The Mars Climate Database (version 4.3). SAE Technical Paper 2009-01-2395. https://doi.org/10.4271/2009-01-2395.
Millour, E., Forget, F., Spiga, A., Vals, M., Zakharov, V., Navarro, T., Montabone, L., Lefevre, F., Montmessin, F., Chaufray, J. Y., & Lopez-Valverde, M. (2017). The Mars Climate Database (MCD version 5.3). In EGU General Assembly Conference Abstracts (Vol. 19, p. 12247).
Montabone, L., Forget, F., Millour, E., Wilson, R. J., Lewis, S. R., Cantor, B., Kass, D., Kleinböhl, A., Lemmon, M. T., Smith, M. D., & Wolff, M. J. (2015). Eight-year climatology of dust optical depth on Mars. Icarus, 251, 65–95. https://doi.org/10.1016/j.icarus.2014.12.034
Mumma, M. J., Stone, E. J., Borst, W. L., & Zipf, E. C. (1972). Dissociative excitation of vacuum ultraviolet emission features by electron impact on molecular gases. III. CO2. The Journal of Chemical Physics, 57(1), 68–75. https://doi.org/10.1063/1.1678019
Nier, A. O., & McElroy, M. B. (1977). Composition and structure of Mars' upper atmosphere results from the neutral mass spectrometers on Viking 1 and 2. Journal of Geophysical Research, 82(28), 4341–4349. https://doi.org/10.1029/JS082i028p04341
Shematovich, V. I., Bisikalo, D. V., Gérard, J.-C., Cox, C., Bougher, S. W., & Leblanc, F. (2008). Monte Carlo model of electron transport for the calculation of Mars dayglow emissions. Journal of Geophysical Research, 113, E02011. https://doi.org/10.1029/2007JE002938
Stevens, M. H., Gustin, J., Ajello, J. M., Evans, J. S., Meier, R. R., Kochenash, A. J., Stephan, A. W., Stewart, A. I. F., Esposito, L. W., McClintock, W. E., Holsclaw, G., Bradley, E. T., Lewis, B. R., & Heays, A. N. (2011). The production of Titan's ultraviolet nitrogen airglow. Journal of Geophysical Research, 116, A05304. https://doi.org/10.1029/2010JA016284
Steward, A. I. (1972). Mariner 6 and 7 Ultraviolet Spectrometer Experiment: Implications of CO2+, CO, and O airglow. Journal of Geophysical Research, 77(1), 54–68. https://doi.org/10.1029/JA077i001p00054
Steward, A. I. F., Alexander, M. J., Meier, R. R., Paxton, L. J., Bougher, S. W., & Fesen, C. G. (1992). Atomic oxygen in the Martian thermosphere. Journal of Geophysical Research, 97(A1), 91–102. https://doi.org/10.1029/91JA02489
Stone, E. J., & Zipf, E. C. (1974). Electron-impact excitation of the 3S0 and 5S0 states of atomic oxygen. Journal of Chemical Physics, 60(11), 4237–4243. https://doi.org/10.1063/1.1680894
Stone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., & Mahaffy, P. R. (2018). Thermal structure of the Martian upper atmosphere from MAVEN/NGIMS. Journal of Geophysical Research: Planets, 123, 2842–2867. https://doi.org/10.1029/2018JE005559
Strickland, D. J., Stewart, A. I., Barth, C. A., & Hord, C. W. (1973). Mariner 9 Ultraviolet Spectrometer Experiment: Mars atomic oxygen 1304-A emission. Journal of Geophysical Research, 78(22), 4547–4559. https://doi.org/10.1029/JA078i022p04547
Strickland, D. J., Thomas, G. E., & Sparks, P. R. (1972). Mariner 6 and 7 Ultraviolet Spectrometer Experiment: Analysis of the OI 1304- and 1356-A emissions. Journal of Geophysical Research, 77(22), 4052–4068. https://doi.org/10.1029/JA077i022p04052
Tayal, S. S., & Zatsarinny, O. (2016). B-spline R-matrix-with-pseudostates approach for excitation and ionization of atomic oxygen by electron collisions. Physical Review, 94(4). https://doi.org/10.1103/PhysRevA.94.042707
Thiemann, E., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., & Jakosky, B. M. (2017). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. Journal of Geophysical Research: Space Physics, 122, 2748–2767. https://doi.org/10.1002/2016JA023512
Thomas, G. E. (1971). Neutral composition of the upper atmosphere of Mars as determined from the Mariner UV spectrometer experiments. Journal of the Atmospheric Sciences, 28(6), 859–868. https://doi.org/10.1175/1520-0469(1971)028<0859:NCOTUA>2.0.CO;2
Venot, O., Bénilan, Y., Fray, N., Gazeau, M.-C., Lefèvre, F., Et Es-sebbar, E., Hébrard, E., Schwell, M., Bahrini, C., Montmessin, F., & Lefèvre, M. (2018). VUV-absorption cross section of carbon dioxide from 150 to 800 K and applications to warm exoplanetary atmospheres. Astronomy & Astrophysics, 609, A34. https://doi.org/10.1051/0004-6361/201731295
Woods, T. N., Snow, M., Harder, J., Chapman, G., & Cookson, A. (2015). A different view of solar spectral irradiance variations: Modeling total energy over six-month intervals. Solar Physics, 290(10), 2649–2676. https://doi.org/10.1007/s11207-015-0766-0
Zipf, E. C., & Erdman, P. W. (1985). Electron impact excitation of atomic oxygen: Revised cross section. Journal of Geophysical Research, 90(A11), 11,087–11,090. https://doi.org/10.1029/JA090iA11p11087