[en] We analyze two Martian years of dayglow measurements of the CO Cameron bands and the CO2+ ultraviolet doublet (UVD) at 298-299 nm with the Imaging UltraViolet Spectrograph on board the Maven orbiter. We show that the altitude and the brightness of the two emissions peaks are strongly correlated, although data were collected over a wide range of latitudes and seasons. veraged limb profiles are presented and compared with numerical simulations based on updated calculations of the production of the CO (a3Π) and the CO2+ (B 2Σ) states. The model simulations use the solar flux directly measured on board MAVEN with the Extreme Ultraviolet Monitor (EUVM) and the neutral densities provided by the Mars Climate Database (MCD) version 5.3, adapted to
the conditions of the observations. We show that the altitude and the shape of the sample limb profiles are well reproduced using the MCD neutral atmosphere. The simulated peak intensities of the CO2+ UVD and Cameron bands are in good agreement considering the uncertainties on the excitation cross sections and the calibration of the IUVS and EUVM instruments. No significant adjustment of the electron impact cross section on CO2 to produce the a3Π state is needed. Seasonal-latitudinal maps of the Cameron and UVD peak altitude observed during two Martian years show variations as large as 23 km. Model simulations of the amplitude of these changes are in fair agreement with the observations except during the southern summer dust period (Ls =
270°-320°) when the calculated rise of the dayglow layer is underestimated.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Gkouvelis, Leonardos ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Ritter, Birgit ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Jain, S.K.
Schnieder, N.M.
Language :
English
Title :
MAVEN‐IUVS observations of the CO2+ UV doublet and CO Cameron bands in the Martian thermosphere: Aeronomy, seasonal and latitudinal distribution.
Publication date :
June 2019
Journal title :
Journal of Geophysical Research. Space Physics
ISSN :
2169-9380
eISSN :
2169-9402
Publisher :
Wiley, Hoboken, United States - New Jersey
Volume :
124
Pages :
5816-5827
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
BELSPO - Politique scientifique fédérale F.R.S.-FNRS - Fonds de la Recherche Scientifique ASE - Agence Spatiale Européenne
Anderson Jr., D. E., & Hord, C. W. (1971). MMariner 6 and 7 ultraviolet spectrometer experiment: Analysis of hydrogen Lyman-alpha data. Journal of Geophysical Research, 76(28) 6666–6673.
Archer, L. E., Stark, G., Smith, P. L., Lyons, J. R., De Oliveira, N., Nahon, L., Joyeux, D., & Blackie, D. (2013). Room temperature photoabsorption cross section measurements of CO2 between 91,000 and 115,000 cm− 1. Journal of Quantitative Spectroscopy and Radiative Transfer, 117, 88–92. https://doi.org/10.1016/j.jqsrt.2012.11.009
Avakyan, S. V., Ii'In, R. N., Lavrov, V. M., & Ogurtsov, G. N. (1999). Collision processes and excitation of UV emission from planetary atmospheric gases: A handbook of cross sections. Amsterdam: CRC Press.
Barth, C. A., Hord, C. W., Pearce, J. B., Kelly, K. K., Anderson, G. P., & Stewart, A. I. (1971). Mariner 6 and 7 ultraviolet spectrometer experiment: Upper atmosphere data. Journal of Geophysical Research, 76(10), 2213–2227. https://doi.org/10.1029/JA076i010p02213
Barth, C. A., Stewart, A. I., Hord, C. W., & Lane, A. L. (1972). Mariner 9 ultraviolet spectrometer experiment: Mars airglow spectroscopy and variations in Lyman alpha. Icarus, 17(2), 457–468. https://doi.org/10.1016/0019-1035(72)90011-5
Bougher, S. W., Pawlowski, D., Bell, J. M., Nelli, S., McDunn, T., Murphy, J. R., Chizek, M., & Ridley, A. (2015). Mars Global Ionosphere-Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. Journal of Geophysical Research: Planets, 120, 311–342. https://doi.org/10.1002/2014JE004715
Bougher, S. W., Roeten, K. J., Olsen, K., Mahaffy, P. R., Benna, M., Elrod, M., Jain, S. K., Schneider, N. M., Deighan, J., Thiemann, E., Eparvier, F. G., Stiepen, A., Jakosky, B. M., & Eparvier, F. G. (2017). The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. Journal of Geophysical Research: Space Physics, 122, 1296–1313. https://doi.org/10.1002/2016JA023454
Carlson, R. W., Judge, D. L., & Ogawa, M. (1973). Photoionization of the CO2 + (B2Σu + ➔ X2Πg) 2980-A band. Journal of Geophysical Research, 78(16), 3194–3196. https://doi.org/10.1029/JA078i016p03194
Clancy, R. T., Muhleman, D. O., & Jakosky, B. M. (1983). Variability of carbon monoxide in the Mars atmosphere. Icarus, 55(2), 282–301. https://doi.org/10.1016/0019-1035(83)90083-0
Conway, R. R. (1981). Spectroscopy of the Cameron bands in the Mars airglow. Journal of Geophysical Research, 86(A6), 4767–4775. https://doi.org/10.1029/JA086iA06p04767
Cox, C., Gérard, J. C., Hubert, B., Bertaux, J. L., & Bougher, S. W. (2010). Mars ultraviolet dayglow variability: SPICAM observations and comparison with airglow model. Journal of Geophysical Research, 115, E04010. https://doi.org/10.1029/2009JE003504
Eparvier, F. G., Chamberlin, P. C., Woods, T. N., & Thiemann, E. M. B. (2015). The solar extreme ultraviolet monitor for MAVEN. Space Science Reviews, 195(1-4), 293–301. https://doi.org/10.1007/s11214-015-0195-2
Erdman, P. W., & Zipf, E. C. (1983). Electron-impact excitation of the Cameron system (a3Π → X1Σ) of CO. Planetary and Space Science, 31(3), 317–321. https://doi.org/10.1016/0032-0633(83)90082-X
Feldman, P. D., Burgh, E. B., Durrance, S. T., & Davidsen, A. F. (2000). Far-ultraviolet spectroscopy of Venus and Mars at 4 Å resolution with the Hopkins Ultraviolet Telescope on Astro-2. The Astrophysical Journal, 538(1), 395–400. https://doi.org/10.1086/309125
Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S. R., Read, P. L., & Huot, J. P. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104(E10), 24,155–24,175. https://doi.org/10.1029/1999JE001025
Forget, F., Montmessin, F., Bertaux, J. L., González-Galindo, F., Lebonnois, S., Quemerais, E., Reberac, A., Dimarellis, E., & López-Valverde, M. A. (2009). Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM. Journal of Geophysical Research, 114, E01004. https://doi.org/10.1029/2008JE003086
Fox, J. L. (1992). Airglow and aurora in the atmospheres of Venus and Mars. In Venus and Mars: Atmospheres, ionospheres, and solar wind interactions, Geophysical monograph series, (pp. 191–222). Washington, D. C: American Geophysical Union. https://doi.org/10.1029/GM066p0191
Fox, J. L., & Dalgarno, A. (1979). Ionization, luminosity, and heating of the upper atmosphere of Mars. Journal of Geophysical Research, 84(A12), 7315–7333. https://doi.org/10.1029/JA084iA12p07315
Gallagher, J. W., Brion, C. E., Samson, J. A. R., & Langhoff, P. W. (1988). Absolute cross sections for molecular photoabsorption, partial photoionization, and ionic photofragmentation processes. Journal of Physical and Chemical Reference Data, 17(1), 9–153. https://doi.org/10.1063/1.555821
Gérard, J. C., Soret, L., Libert, L., Lundin, R., Stiepen, A., Radioti, A., & Bertaux, J. L. (2015). Concurrent observations of ultraviolet aurora and energetic electron precipitation with Mars Express. Journal of Geophysical Research: Space Physics, 120, 6749–6765. https://doi.org/10.1002/2015ja021150
Gérard, J.-C., Soret, L., Shematovich, V. I., Bisikalo, D. V., & Bougher, S. W. (2017). The Mars diffuse aurora: A model of ultraviolet and visible emissions. Icarus, 288, 284–294. https://doi.org/10.1016/j.icarus.2017.01.037
Gilijamse, J. J., Hoekstra, S., Meek, S. A., Metsälä, M., van de Meerakker, S. Y. T., Meijer, G., & Groenenboom, G. C. (2007). The radiative lifetime of metastable CO (a3Π, n = 0). The Journal of Chemical Physics, 127(22), 221102-1–221102-4. https://doi.org/10.1063/1.2813888
Gkouvelis, L., Gérard, J.-C., Ritter, B., Hubert, B., Schneider, N. M., & Jain, S. (2018). The O(1S) 297.2 nm dayglow emission: A tracer of CO2 density variations in the Martian lower thermosphere. Journal of Geophysical Research: Planets, 123, 3119–3132. https://doi.org/10.1029/2018JE005709
González-Galindo, F., Chaufray, J.-Y., Forget, F., Garcia-Comas, M., Montmessin, F., Jain, S. K., & Stiepen, A. (2018). UV dayglow variability on Mars: Simulation with a global climate model and comparison with SPICAM/MEx data. Journal of Geophysical Research: Planets, 123, 1934–1952. https://doi.org/10.1029/2018JE005556
González-Galindo, F., Forget, F., López-Valverde, M. A., Angelats, i., Coll, M., & Millour, E. (2009). A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. Journal of Geophysical Research, 114, E04001. https://doi.org/10.1029/2008JE003246
González-Galindo, F., López-Valverde, M. A., Forget, F., García-Comas, M., Millour, E., & Montabone, L. (2015). Variability of the Martian thermosphere during eight Martian years as simulated by a ground-to-exosphere global circulation model. Journal of Geophysical Research: Planets, 120, 2020–2035. https://doi.org/10.1002/2015JE004925
Gröller, H., Montmessin, F., Yelle, R. V., Lefèvre, F., Forget, F., Schneider, N. M., Koskinen, T. T., Deighan, J., & Jain, S. K. (2018). MAVEN/IUVS stellar occultation measurements of Mars atmospheric structure and composition. Journal of Geophysical Research: Planets, 123, 1449–1483. https://doi.org/10.1029/2017JE005466
Gronoff, G., Simon Wedlund, C., Mertens, C. J., Barthélemy, M., Lillis, R. J., & Witasse, O. (2012). Computing uncertainties in ionosphere-airglow models: II. The Martian airglow. Journal of Geophysical Research, 117, A05309. https://doi.org/10.1029/2011JA017308
Hanson, W. B., Sanatani, S., & Zuccaro, D. R. (1977). The Martian ionosphere as observed by the Viking retarding potential analyzers. Journal of Geophysical Research, 82(28), 4351–4363. https://doi.org/10.1029/JS082i028p04351
Hess, S. L., Ryan, J. A., Tillman, J. E., Henry, R. M., & Leovy, C. B. (1980). The annual cycle of pressure on Mars measured by Viking landers 1 and 2. Geophysical Research Letters, 7(3), 197–200. https://doi.org/10.1029/GL007i003p00197
Huestis, D. L., & Berkowitz, J. (2011). Critical Evaluation of the Photoabsorption Cross Section of CO2 from 0.125 to 201.6 nm a Room Temperature. Advances in GeosciencesAdvances in Geosciences (pp. 229–242).
Itikawa, Y. (2002). Cross sections for electron collisions with carbon dioxide. Journal of Physical and Chemical Reference Data, 31(3), 749–767. https://doi.org/10.1063/1.1481879
Jain, S. K., & Bhardwaj, A. (2012). Impact of solar EUV flux on CO Cameron band and CO2 + UV doublet emissions in the dayglow of Mars. Planetary and Space Science, 63, 110–122.
Jain, S. K., Stewart, A. I. F., Schneider, N. M., Deighan, J., Stiepen, A., Evans, J. S., Stevens, M. H., Chaffin, M. S., Crismani, M., McClintock, W. E., Clarke, J. T., Holsclaw, G. M., Lo, D. Y., Lefèvre, F., Montmessin, F., Thiemann, E. M. B., Eparvier, F., & Jakosky, B. M. (2015). The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophysical Research Letters, 42, 9023–9030. https://doi.org/10.1002/2015GL065419
Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., Baird, D., Baker, D., Bartlett, R., Benna, M., Bougher, S., Brain, D., Carson, D., Cauffman, S., Chamberlin, P., Chaufray, J.-Y., Cheatom, O., Clarke, J., Connerney, J., Cravens, T., Curtis, D., Delory, G., Demcak, S., DeWolfe, A., Eparvier, F., Ergun, R., Eriksson, A., Espley, J., Fang, X., Folta, D., Fox, J., Gomez-Rosa, C., Habenicht, S., Halekas, J., Holsclaw, G., Houghton, M., Howard, R., Jarosz, M., Jedrich, N., Johnson, M., Kasprzak, W., Kelley, M., King, T., Lankton, M., Larson, D., Leblanc, F., Lefevre, F., Lillis, R., Mahaffy, P., Mazelle, C., McClintock, W., McFadden, J., Mitchell, D. L., Montmessin, F., Morrissey, J., Peterson, W., Possel, W., Sauvaud, J.-A., Schneider, N., Sidney, W., Sparacino, S., Stewart, A. I. F., Tolson, R., Toublanc, D., Waters, C., Woods, T., Yelle, R., & Zurek, R. (2015). The Mars atmosphere and volatile evolution (MAVEN) mission. Space Science Reviews, 195(1-4), 3–48. https://doi.org/10.1007/s11214-015-0139-x
Krasnopolsky, V. A., & Feldman, P. D. (2002). Far ultraviolet spectrum of Mars. Icarus, 160(1), 86–94. https://doi.org/10.1006/icar.2002.6949
Lawrence, G. M. (1972). Photodissociation of CO2 to produce CO (a 3Π). The Journal of Chemical Physics, 56(7), 3435–3442. https://doi.org/10.1063/1.1677717
Leblanc, F., Chaufray, J. Y., Lilensten, J., Witasse, O., & Bertaux, J. L. (2006). Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. Journal of Geophysical Research, 111, E09S11. https://doi.org/10.1029/2005JE002664
Liu, G., England, S. L., Lillis, R. J., Withers, P., Mahaffy, P. R., Rowland, D. E., Elrod, M., Benna, M., Kass, D. M., Janches, D., & Jakosky, B. (2018). Thermospheric expansion associated with dust increase in the lower atmosphere on Mars observed by MAVEN/NGIMS. Geophysical Research Letters, 45, 2901–2910. https://doi.org/10.1002/2018GL077525
McClintock, W. E., Schneider, N. M., Holsclaw, G. M., Clarke, J. T., Hoskins, A. C., Stewart, I., Montmessin, F., Yelle, R. V., & Deighan, J. (2015). The imaging ultraviolet spectrograph (IUVS) for the MAVEN mission. Space Science Reviews, 195(1-4), 75–124. https://doi.org/10.1007/s11214-014-0098-7
Millour, E., Forget, F., Spiga, A., Vals, M., Zakharov, V., Navarro, T., Montabone, L., Lefevre, F., Montmessin, F., Chaufray, J.-Y., Lopez-Valverde, M., Gonzalez-Galindo, F., Lewis, S., Read, P., Desjean, M.-C., & MCD/GCM Development Team (2017). The Mars Climate Database (MCD version 5.3). In EGU General Assembly Conference Abstracts (Vol. 19, p. 12247).
Montabone, L., Forget, F., Millour, E., Wilson, R. J., Lewis, S. R., Cantor, B., Kass, D., Kleinböhl, A., Lemmon, M. T., Smith, M. D., & Wolff, M. J. (2015). Eight-year climatology of dust optical depth on Mars. Icarus, 251, 65–95. https://doi.org/10.1016/j.icarus.2014.12.034
Nier, A. O., & McElroy, M. B. (1977). Composition and structure of Mars' upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2. Journal of Geophysical Research, 82(28), 4341–4349. https://doi.org/10.1029/JS082i028p04341
Padial, N., Csanak, G., McKoy, B. V., & Langhoff, P. W. (1981). Photoexcitation and ionization in carbon dioxide: Theoretical studies in the separated-channel static-exchange approximation. Physical Review A, 23(1), 218–235. https://doi.org/10.1103/PhysRevA.23.218
Shematovich, V. I., Bisikalo, D. V., Gérard, J.-C., Cox, C., Bougher, S. W., & Leblanc, F. (2008). Monte Carlo model of electron transport for the calculation of Mars dayglow emissions. Journal of Geophysical Research, 113, E02011. https://doi.org/10.1029/2007JE002938
Shirai, T., Tabata, T., & Tawara, H. (2001). Analytic cross sections for electron collisions with CO, CO2, and H2O relevant to edge plasma impurities. Atomic Data and Nuclear Data Tables, 79(1), 143–184. https://doi.org/10.1006/adnd.2001.0866
Simon, C., Witasse, O., Leblanc, F., Gronoff, G., & Bertaux, J. L. (2009). Dayglow on Mars: Kinetic modelling with SPICAM UV limb data. Planetary and Space Science, 57(8-9), 1008–1021. https://doi.org/10.1016/j.pss.2008.08.012
Strickland, D. J., Stewart, A. I., Barth, C. A., Hord, C. W., Lane, A. L. (1973). Mariner 9 ultraviolet spectrometer experiment: Mars atomic oxygen 1304-A emission. Journal of Geophysical Research, 78(22) 4547–4559.
Stevens, M. H., Evans, J. S., Schneider, N. M., Stewart, A. I. F., Deighan, J., Jain, S. K., Crismani, M., Stiepen, A., Chaffin, M. S., McClintock, W. E., Holsclaw, G. M., Lefèvre, F., Lo, D. Y., Clarke, J. T., Montmessin, F., Bougher, S. W., & Jakosky, B. M. (2015). New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN. Geophysical Research Letters, 42, 9050–9056. https://doi.org/10.1002/2015GL065319
Stewart, A. I. (1972). Mariner 6 and 7 ultraviolet spectrometer experiment: Implications of CO2 +, CO and O airglow. Journal of Geophysical Research, 77(1), 54–68. https://doi.org/10.1029/JA077i001p00054
Stewart, A. I., Barth, C. A., Hord, C. W., & Lane, A. L. (1972). Mariner 9 ultraviolet spectrometer experiment: Structure of Mars' upper atmosphere. Icarus, 17(2), 469–474. https://doi.org/10.1016/0019-1035(72)90012-7
Thiemann, E., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., & Jakosky, B. M. (2017). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. Journal of Geophysical Research: Space Physics, 122, 2748–2767. https://doi.org/10.1002/2016JA023512
Withers, P., & Pratt, R. (2013). An observational study of the response of the upper atmosphere of Mars to lower atmospheric dust storms. Icarus, 225(1), 378–389. https://doi.org/10.1016/j.icarus.2013.02.032