Comparison of quantitative PCR and MALDI-TOF mass spectrometry assays for identification of bacteria in milk samples from cows with subclinical mastitis
Duprez, Jean-Noël ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Département des maladies infectieuses et parasitaires (DMI)
Théron, L.; Hipra Belgium
Thiry, Damien ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Bactériologie et pathologie des maladies bactériennes
Mainil, Jacques ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Bactériologie et pathologie des maladies bactériennes
Language :
English
Title :
Comparison of quantitative PCR and MALDI-TOF mass spectrometry assays for identification of bacteria in milk samples from cows with subclinical mastitis
Ashraf, A. and Imran, M. (2018) Diagnosis of bovine mastitis: from laboratory to farm. Trop An Hlth Prod 50, 1193–1202. https://doi.org/10.1007/s.11250-018-1629-0.
Barreiro, J., Gonçalves, J., Grenfell, R., Leite, R., Juliano, L. and Santos, M. (2018) Direct identification of bovine mastitis pathogens by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in pre-incubated milk. Braz J Microbiol 49, 801–807. https://doi.org/10.1016/j.bjm.2018.04.012.
Cameron, M., Barkema, H.W., De Buck, J., De Vliegher, S., Chaffer, M., Lewis, J. and Keefe, G.P. (2017) Identification of bovine-associated coagulase-negative staphylococci by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a direct transfer protocol. J Dairy Sci 100, 2137–2147. https://doi.org/10.3168/jds.2016-12020.
Cameron, M., Perry, J., Middleton, J.R., Chaffer, M., Lewis, J. and Keefe, G.P. (2018) Short communication: Evaluation of MALDI-TOF mass spectrometry and a custom reference spectra expanded database for the identification of bovine-associated coagulase-negative staphylococci. J Dairy Sci 101, 590–595. https://doi.org/10.3168/jds.2017-13226.
Cederlöf, S.E., Toft, N., Aalbaek, B. and Klaas, I.C. (2012) Latent class analysis of the diagnostic characteristics of PCR and conventional bacteriological culture in diagnosing intramammary infections caused by Staphylococcus aureus in dairy cows at dry off. Acta Vet Scand 54, 65. https://doi.org/10.1186/1751-0147-54-65.
Cohen, J. (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20, 37–46.
El-Sayed, A., Awad, W., Abdou, N.-E. and Vazquez, H.C. (2017) Molecular biological tools applied for identification of mastitis causing pathogens. Int J Vet Sci Med 5, 89–97. https://doi.org/10.1016/j.ijvsm.2017.08.002.
Friman, M., Hiitiö, H., Niemi, M., Holopainen, J., Pyörälä, S. and Simojoki, H. (2017) The effect of a cannula milk sampling technique on the microbiological diagnosis of bovine mastitis. Vet J 226, 57–61. https://doi.org/10.1016/j.tvjl.2017.07.003.
Gussmann, M., Steeneveld, W., Kirkeby, C., Hogeveen, H., Farre, M. and Halasa, T. (2019) Economic and epidemiological impact of different intervention strategies for subclinical and clinical mastitis. Prev Vet Med 166, 78–85. https://doi.org/10.1016/j.prevetmed.2019.03.001.
Halasa, T., Huijps, K., Osterås, O. and Hogeveen, H. (2007) Economic effects of bovine mastitis and mastitis management: a review. Vet Q 29, 18–31. https://doi.org/10.1080/01652176.2007.9695224.
Hiitiö, H., Riva, R., Autio, T., Pohjanvirta, T., Holopainen, J., Pyörälä, S. and Pelkonen, S. (2015) Performance of a real-time PCR assay in routine bovine mastitis diagnostics compared with in-depth conventional culture. J Dairy Res 82, 200–208. https://doi.org/10.1017/S0022029915000084.
Hiitiö, H., Simojoki, H., Kalmus, P., Holopainen, J., Pyörälä, S. and Taponen, S. (2016) The effect of sampling technique on PCR-based bacteriological results of bovine milk samples. J Dairy Res 99, 6532–6541. https://doi.org/10.3168/jds.2015-10811.
Hogan, J., Smith, K., Hoblet, K., Schoenberger, P., Todhunter, D., Hueston, W., Protchard, D., Bowman, G. et al. (1989) Field survey of clinical mastitis in low somatic cell counts herds. J Dairy Sci 72, 1547–1556.
Koskinen, M.T., Wellenberg, G.J., Sampimon, O.C., Holopainen, J., Rothkamp, A., Salmikivi, L., van Haeringen, W.A., Lam, T.J. et al. (2010) Field comparison of real-time polymerase chain reaction and bacterial culture for identification of bovine mastitis bacteria. J Dairy Sci 93, 5707–5715. https://doi.org/10.3168/jds.2010-3167.
Lakhundi, S. and Zhang, K. (2018) Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev 31, e00020–18 https://doi.org/10.128/CMR.00020-18.
Mahmmod, Y.S., Klaas, I.C., Nielsen, S.S., Katholm, J. and Toft, N. (2013a) Effect of presampling procedure on real-time PCR used for diagnosis of intramammary infections with Staphylococcus aureus in dairy cows at routine milk recording. J Dairy Sci 96, 2226–2233. https://doi.org/10.3168/jds.2012-6059.
Mahmmod, Y.S., Toft, N., Katholm, J., Gronbaek, I. and Klaas, I.C. (2013b) Estimation of test characteristics of real-time PCR and bacterial culture of subclinical intramammary infections with Streptococcus agalactiae in Danish dairy cattle in 2012 using latent class analysis. Prev Vet Med 109, 264–270. https://doi.org/10.1016/j.prevetmed.2012.10.018.
Mahmmod, Y.S., Klaas, I.C. and Enevoldsen, C. (2017) DNA carryover in milk samples from routine milk recording used foe PCR-based diagnosis of bovine Staphylococcus aureus mastitis. J Dairy Sci 100, 5709–5716. https://doi.org/10.3168/jds.2016-12330.
Mahmmod, Y.S., Nonnemann, B., Svennesen, L., Pedersen, K. and Klaas, I.C. (2018) Typeability of MALDI-TOF assay for identification of non-aureus staphylococci associated with bovine intramammary infections and teat apex colonization. J Dairy Sci 101, 9430–9438. https://doi.org/10.3168/jds.2018-14579.
McNemar, Q. (1947) Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12, 153–157.
Nonnemann, B., Lyhs, U., Svennesen, L., Christesen, K.A., Klaas, I.C. and Pedersen, K. (2019) Bovine mastitis bacteria resolved by MALDI-TOF mass spectrometry. J Dairy Sci 102, 2515–2524. https://doi.org/10.3168/jds.2018-15424.
Nyman, A.-K., Waller, K.P., Emanuelson, U. and Frössling, J. (2016) Sensitivity and specificity of PCR analysis and bacteriological culture of mil samples for identification of intramammary infections in dairy cows using latent class analysis. Prev Vet Med 135, 123–131. https://doi.org/10.1016/j.prevetmed.2016.11.009.
Pinsky, B., Samson, D., Ghafghaichi, L., Baron, E. and Banaei, N. (2009) Comparison of real-time PCR and conventional biochemical methods for identification of Staphylococcus lugdunensis. J Clin Microbiol 47, 3472–3477. https://doi.org/10.1128/JCM.00342-09.
Reyher, K.K., Dohoo, I.R., Scholl, D.T. and Keefe, G.P. (2012) Evaluation of minor pathogens intramammary infection, susceptibility parameters, and somatic cell counts on the development of new intramammary infections with major mastitis pathogens. J Dairy Sci 95, 3766–3780. https://doi.org/10.3168/jds.2011-5148.
Schabauer, L., Wenning, M., Huber, I. and Ehling-Schulz, M. (2014) Novel physico-chemical diagnostic tools for high throughput identification of bovine mastitis associated gram-positive, catalase-negative cocci. BMC Vet Res 10, 156. https://doi.org/10.1186/1746-6148-10-156.
Statistiques biomédicales. (2017) Comparaison de méthodes qualitatives (concordance). Accessed April 28, 2019. https://statistiquesbiologiemedicale.wordpress.com/2017/08/03/qualitatif.
Suisselab AG Zollikofen. (2006) Identification des mammites à l'aide de Pathoproof Mammites PCR Assay. Accessed 22 April 2018. http://www.suisselab.ch/fr/analyses-de-lait/identification-de-mammites/evaluation-des-resultats.html.
Svennesen, L., Mahmmod, Y.S., Skjolstrup, N.K., Mathiasen, L.R., Katholm, J., Pedersen, K., Klaas, I.C. and Nielsen, S.S. (2018) Accuracy of qPCR and bacterial culture for the diagnosis of bovine intramammary infections and teat skin colonization with Streptococcus agalactiae and Staphylococcus aureus using Bayesian analysis. Prev Vet Med 161, 69–74. https://doi.org/10.1016/j.prevetmed.2018.10.013.
Taponen, S., Salmikivi, L., Simojoki, H., Koskinen, M.T. and Pyörälä, S. (2009) Real-time polymerase chain reaction-based identification of bacteria in milk samples from bovine clinical mastitis with no growth in conventional culturing. J Dairy Sci 92, 2610–2617. https://doi.org/10.3168/jds.2008-1729.
Thermo Scientific (2015) Protocol Book. Thermo Scientific. PathoProof Complete-16 kit instructions for use. Accessed 16 February 2018. https://assets.thermofisher.com/TFSAssets/MBD/Instructions/D14910-02-PathoProof%20Complete-16%20IFU.pdf.
Wilson, D., Middleton, J., Adkins, P. and Goodell, G. (2019) Test agreement among biochemical methods, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and 16S rRNA sequencing for identification of microorganisms isolated from bovine milk. J Clin Microbiol 27, e01381–18. https://doi.org/10.1128/JCM.01381-18.
Yalcin, C., Stott, A.W., Logue, D.N. and Gunn, J. (1999) The economic impact of mastitis-control procedures used in Scottish dairy herds with high bulk-tank somatic-cell counts. Prevent Vet Med 41, 135–149.
Zadoks, R.N., Tassi, R., Martin, E., Holopainen, J., McCallum, S., Gibbons, J. and Ballingall, K.T. (2014) Comparison of bacteriological culture and PCR for detection of bacteria in ovine milk—Sheep are not small cows. J Dairy Sci 97, 6326–6333. https://doi.org/10.3168/jds.2014-8351.