[en] The main ultraviolet auroral emission at Saturn consists of multiple structures of various sizes forming a discontinuous ring of emissions around Saturn’s poles. For decades, it is known that the main emission is occasionally organized in a global spiral surrounding the pole. In August 2016, the Ultraviolet Imaging Spectrograph (UVIS) on board the Cassini spacecraft proceeded to a 7h-long imaging of Saturn’s northern aurora. During this observing sequence, the main emission displayed a spiral wrapping around the pole by more than 370° in longitude. The spiral was in rotation around the pole at ~90% of rigid corotation, which is an unusually high velocity for extended auroral structures. A spiral was again observed during a shorter UVIS sequence, sixteen hours after the end of the first sequence. Simultaneously to the first UVIS sequence, imaging of the energetic neutral atom (ENA) emissions revealed a hot plasma population in the same local time sector as the extremity of the UV spiral. The leading edge of the plasma population follows the spiral structure around the planet. This correspondence suggests that the presence of the hot plasma distorted the magnetospheric current system, resulting in the spiral shape of the main emission. Furthermore, simultaneous in-situ measurements of the ion fluxes exhibit enhancements recurring every ~10.5 hours. The nearly corotating aurora, ENA emissions and ions revealed by this multi-instrument dataset are likely three signatures of a magnetosphere-ionosphere coupling current system and of the associated hot plasma population corotating with the planet.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Palmaerts, Benjamin ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Yao, Zhonghua ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Sergis, N.; Office for Space Research and Technology, Academy of Athens, Athens, Greece
Guo, R. L.; Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, Chi na
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Radioti, Aikaterini ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Language :
English
Title :
A nearly corotating long lasting auroral spiral at Saturn
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.