Cubic equation of state; Équation d’état cubique; GC-VTPR; Mélanges de frigorigènes; Peng-Robinson; Peng–Robinson; Refrigerant mixtures; UNIFAC
Abstract :
[en] This work evaluates the performance of the group contribution volume translated Peng–Robinson model when predicting the vapor–liquid equilibrium and single phase densities of 28 refrigerant mixtures with low global warming potential and zero ozone depletion potential. Cubic equations of state, and particularly the Peng–Robinson equation of state, are widely used in the refrigeration industry due to their easy applicability for new substances, and their low computational time, although generally lower prediction accuracies must be expected compared to multiparameter equations of state. The group contribution volume translated Peng–Robinson equation of state combines the Peng–Robinson equation of state with a new attraction term, improved mixing rules using a group contribution approach, and volume translation. The results are compared with the estimates obtained using the non-volume-translated Peng–Robinson equation of state, and a multiparameter equation of state.
Disciplines :
Energy Materials science & engineering Chemical engineering
Author, co-author :
Bell, I. H.
Welliquet, J.
Mondejar, M. E.
Bazyleva, A.
Quoilin, Sylvain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
Haglind, F.
Language :
English
Title :
Application of the group contribution volume translated Peng–Robinson equation of state to new commercial refrigerant mixtures
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abrams, D.S., Prausnitz, J.M., Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21:1 (1975), 116–128.
Ahlers, J., Gmehling, J., Development of a universal group contribution equation of state. 2. Prediction of vapor–liquid equilibria for asymmetric systems. Ind. Eng. Chem. Res. 41:14 (2002), 3489–3498.
Ahlers, J., Gmehling, J., Development of a universal group contribution equation of state III. Prediction of vapor–liquid equilibria, excess enthalpies, and activity coefficients at infinite dilution with the VTPR model. Ind. Eng. Chem. Res. 41:23 (2002), 5890–5899.
ASHRAE (2016). ANSI/ASHRAE standard 34-2016 designation and safety classification of refrigerants.
Bell, I.H., Jäger, A., Helmholtz energy transformations of common cubic equations of state for use with pure fluids and mixtures. J. Res. Nat. Inst. Stand. Technol., 121, 2016, 238.
Bell, I.H., Satyro, M., Lemmon, E.W., Consistent Twu parameters for more than 2500 pure fluids from critically evaluated experimental data. J. Chem. Eng. Data 63 (2018), 2402–2409.
Bell, I.H., Wronski, J., Quoilin, S., Lemort, V., Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 53:6 (2014), 2498–2508.
Ben Adamson, B., Airah, M., Dimethyl ether as an R12 replacement. Proceeding of the IIF–IIR Conference of Commissions B1, B2, E1 and E2, 1998, Osslo, Norway, 610–617.
Benmansour, S., Richon, D., Vapor–liquid equilibria and densities of the binary refrigerant mixture composed of pentafluoroethane (R 125) and 1,1,1,2-tetrafluoroethane (R 134a) at temperatures between 253 K and 303 K and pressures up to 20 MPa (10402 data points). experimental data and correlations. ELDATA: Int. Electron. J. Phys.-Chem. Data 5 (1999), 117–126.
Benoliel, R.W., Some Physical Constants of Seven Four-Carbon-Atom Hydrocarbons and Neopentane, 1941, Ph.d. thesis. Pennsylvania State University.
Bobbo, S., Stryjek, R., Elvassore, N., Bertucco, A., A recirculation apparatus for vapor–liquid equilibrium measurements of refrigerants. Binary mixtures of R600a, R134a and R236fa. Fluid Phase Equilib. 150–151 (1998), 343–352.
Bondi, A., Physical Properties of Molecular Liquids, Crystals, and Glasses. 1968, Wiley, New York.
Buecker, D., Wagner, W., Reference equations of state for the thermodynamic properties of fluid phase n-butane and isobutane. J. Phys. Chem. Ref. Data 35:2 (2006), 929–1019.
Calado, J.C.G., McLure, I.A., Soares, V.A.M., Surface tension for octafluorocyclobutane, n-butane and their mixtures from 233 K to 254 K, and vapor pressure, excess Gibbs function, and excess volume for the mixtures at 233 K. Fluid Phase Equilib. 2 (1978), 199–213.
Carney, B.R., Density of liquified petroleum gas hydrocarbons. Hydrocarb. Process, 21, 1942, 274.
Carney, B.R., Density of liquified petroleum gas hydrocarbons, their mixtures and three natural gasolines. Hydrocarb. Process, 21, 1942, 84.
Chen, J., Fischer, K., Gmehling, J., Modification of PSRK mixing rules and results for vapor–liquid equilibria, enthalpy of mixing and activity coefficients at infinite dilution. Fluid Phase Equilib. 200:2 (2002), 411–429.
Chen, J.X., Chen, Z., Hu, P., Jiang, B., Li, Z.H., Vapor–liquid equilibria for the binary system pentafluoroethane (HFC-125) + isobutane (HC-600a) at temperatures from (243.15 to 333.15) K. J. Chem. Eng. Data 52 (2007), 2159–2162.
Coffin, C.C., Maass, O., The preparation and physical properties of α-,β- and γ-butylene and normal and isobutane. J. Am. Chem. Soc. 50 (1928), 1427–1437.
Cragoe, C.S. (1943). Liquid densities of eleven hydrocarbons found in commercial C4 mixtures - Tech. Rep. LC-736, Natl. Bur. Stand. (U. S.).
Dahlhoff, G., Pfennig, A., Hammer, H., Oorschot, M.v., Vapor–liquid equilibria in quaternary mixtures of dimethyl ether + n-butane + ethanol + water. J. Chem. Eng. Data 45 (2000), 887–892.
Dana, L.I., Jenkins, A.C., Burdick, H.E., Timm, R.C., Thermodynamic properties of butane, isobutane, and propane. Refrig. Eng., 12, 1926, 387.
Diky, V., Chirico, R.D., Frenkel, M., Bazyleva, A., Magee, J.W., Paulechka, E., Kazakov, A., Lemmon, E.W., Muzny, C.D., Smolyanitsky, A.Y., Townsend, S., Kroenlein, K., 2018. NIST ThermoData Engine, NIST Standard Reference Database 103a/103b, version 10.2, NIST, Standard Reference Data Program, Gaithersburg, MD, 2018. https://www.nist.gov/mml/acmd/trc/thermodata-engine/srd-nist-tde-103b (accessed on 15 December 2018).
Fredenslund, A., Jones, R.L., Prausnitz, J.M., Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21:6 (1975), 1086–1099.
Frey, K., Augustine, C., Ciccolini, R.P., Paap, S., Modell, M., Tester, J., Volume translation in equations of state as a means of accurate property estimation. Fluid Phase Equilib. 260:2 (2007), 316–325.
Fujimine, T., Sato, H., Watanabe, K., Bubble-point pressures and saturated- and compressed-liquid densities of the binary R-125 + R-143a system. Int. J. Thermophys. 20 (1999), 911–922.
Glos, S., Kleinrahm, R., Wagner, W., Measurement of the (p, ρ, T) relation of propane, propylene, n-butane, and isobutane in the temperature range from (95 to 340) K at pressures up to 12 MPa using an accurate two-sinker densimeter. J. Chem. Thermodyn. 36 (2004), 1037–1059.
Gmehling, J., Dortmund data bank-basis for the development of prediction methods. CODATA Bull. 58 (1985), 56–64.
Haynes, W.M., Hiza, M.J., Orthobaric liquid densities of normal butane from 135 to 300 K as determined with a magnetic suspension densimeter. Adv. Cryog. Eng. 21 (1976), 516–521.
Haynes, W.M., Hiza, M.J., Measurements of the orthobaric liquid densities of methane, ethane, propane, isobutane, and normal butane. J. Chem. Thermodyn. 9 (1977), 179–187.
Higashi, Y., Vapor–liquid equilibrium, coexistence curve, and critical locus for pentafluoroethane + 1,1,1,2-tetrafluoroethane (R125/R134a). J. Chem. Eng. Data 44 (1999), 328–332.
Higashi, Y., Vapor–liquid equilibrium, coexistence curve, and critical locus for pentafluoroethane + 1,1,1-trifluoroethane (R125/R143a). J. Chem. Eng. Data 44 (1999), 333–337.
Higuchi, M., Higashi, Y., Measurements of the vapor–liquid equilibrium for binary R-125/134a. Proceedings of the Sixteenth Japan Symposium on Thermophysical Properties, 1995, 5–8.
Holcomb, C.D., Magee, J.W., & Haynes, W.M. (1995). Density Measurements on Natural Gas Liquids — Gas Processors Association Project. Tech. Rep. 916, Research Report RR-147.
Hsu, J., Nagarajan, N., Robinson, R.L., Equilibrium phase compositions, phase densities and interfacial tensions for CO2 + hydrocarbon systems. 1. CO2 + n-butane. J. Chem. Eng. Data 30 (1985), 485–491.
ISO 817:2014(en), Refrigerants – Designation and Safety Classification. 2000, International Organization for Standardization, Geneva, CH.
Ikeda, T., Higashi, Y., Determination of the critical parameters for new refrigerant R-507 and R-407c. Proceedings of the Sixteenth Japan Symposium on Thermophysical Properties, 1995, 169–172.
Jaubert, J.N., Mutelet, F., VLE predictions with the Peng–Robinson equation of state and temperature dependent kij calculated through a group contribution method. Fluid Phase Equilib. 224:2 (2004), 285–304.
Jaubert, J.-N., Privat, R., Guennec, Y.L., Coniglio, L., Note on the properties altered by application of a Péneloux-type volume translation to an equation of state. Fluid Phase Equilib. 419 (2016), 88–95.
Ji, W.-R., Lempe, D., Density improvement of the SRK equation of state. Fluid Phase Equilib. 130:1–2 (1997), 49–63.
Kato, R., Nishiumi, H., Vapor liquid equilibria and critical loci of binary and ternary systems composed of CH2F2, C2HF5 and C2H2F4. Fluid Phase Equilib. 249 (2006), 140–146.
Kayukawa, Y., Hasumoto, M., Kano, Y., Watanabe, K., Liquid-phase thermodynamic properties for propane (1), n-butane (2), and isobutane (3). J. Chem. Eng. Data 50 (2005), 556–564.
Kim, C.N., Park, Y.M., Vapor–liquid equilibrium of HFC-32/134 a and HFC-125/134a systems. Int. J. Thermophys. 20 (1999), 519–530.
Kishizawa, G., Sato, H., Watanabe, K., Measurements of saturation densities in critical region and critical loci for binary R-32/125 and R-125/143a systems. Int. J. Thermophys. 20 (1999), 923–932.
Kleemiss, M., Fortschrittsberichte VDI: Thermodynamic Properties of two Ternary Refrigerant Mixtures: Measurements and Equations of State. 1997, VDI Verlag Gmbh. Tech. Rep. Reihe 19 Nr. 98.
Klosek, J., McKinley, C., Densities of LNG and of low molecular weight hydrocarbons. Proceedings of the First International Conference on LNG, 1968, paper 22.
Kobayashi, M., Nishiumi, H., Vapor–liquid equilibria for the pure, binary and ternary systems containing HFC32, HFC125 and HFC134a. Fluid Phase Equilib. 144 (1998), 191–202.
Kumagai, A., Takahashi, S., Viscosity and density of liquid mixtures of n-alkanes with squalane. Int. J. Thermophys. 16 (1995), 773–779.
Kunz, O., Klimeck, R., Wagner, W., Jaeschke, M., The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures. 2007, VDI Verlag GmbH.
Le Guennec, Y., Lasala, S., Privat, R., Jaubert, J.N., A consistency test for alpha-functions of cubic equations of state. Fluid Phase Equilib. 427 (2016), 513–538.
Lee, B.G., Park, J.Y., Lim, J.S., Lee, Y.W., Lee, C.H., Vapor–liquid equilibria for isobutane + pentafluoroethane (HFC-125) at 293.15 to 313.15 K and + 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) at 303.15 to 323.15 K. J. Chem. Eng. Data 45 (2000), 760–763.
Legatski, T., Nelson, W., Dean, M., Fruit, L., Densities of liquefied petroleum gases. Ind. Eng. Chem. 34 (1942), 1240–1243.
LeGuennec, Y., Privat, R., Jaubert, J.N., Development of the translated-consistent tc-PR and tc-RK cubic equations of state for a safe and accurate prediction of volumetric, energetic and saturation properties of pure compounds in the sub- and super-critical domains. Fluid Phase Equilib. 429 (2016), 301–312.
Lemmon, E.W., Bell, I.H., Huber, M.L., McLinden, M.O., NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0. 2018, National Institute of Standards and Technology http://www.nist.gov/srd/nist23.cfm.
Lim, J.S., Park, J.Y., Lee, B.G., Lee, Y.W., Kim, J.D., Reply to comments by Stanislaw K. Malanowski and Roman Stryjek on J. Chem. Eng. Data 1999, 44, 1226–1230. J. Chem. Eng. Data 45 (2000), 1219–1221.
Lopez-Echeverry, J.S., Reif-Acherman, S., Araujo-Lopez, E., Peng–Robinson equation of state: 40 years through cubics. Fluid Phase Equilib. 447 (2017), 39–71.
Mathias, P.M., Copeman, T.W., Extension of the Peng–Robinson equation of state to complex mixtures: evaluation of the various forms of the local composition concept. Fluid Phase Equilib. 13 (1983), 91–108.
McClune, C.R., Measurements of the densities of liquefied hydrocarbons from 93 to 173 K. Cryogenics 16 (1976), 289–295.
Miyamoto, H., Uematsu, M., Measurements of vapour pressures and saturated-liquid densities for n-butane at T = (280 to 424) K. J. Chem. Thermodyn. 39 (2007), 827–832.
Mota-Babiloni, A., Navarro-Esbrí, J., Barragán-Cervera, A., Molés, F., Peris, B., Analysis based on EU regulation no 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems. Int. J. Refrig. 52 (2015), 21–31.
Nagel, M., Bier, K., Vapor–liquid equilibrium of ternary mixtures of the refrigerants R32, R125 and R134a. Int. J. Refrig. 18 (1995), 534–543.
Niesen, V.G., (Vapor + liquid) equilibria and coexisting densities of (carbon dioxide + n-butane) at 311 to 395 K. J. Chem. Thermodyn. 21 (1989), 915–923.
Nishiumi, H., Ohno, T., High pressure vapor–liquid equilibria and critical loci for the HFC125-HFC134a system. Korean J. Chem. Eng. 17 (2000), 668–671.
Orrit, J.E., Laupretre, J.M., Density of liquefied natural gas components. Adv. Cryog. Eng., 23, 1978, 573.
Outcalt, S., McLinden, M.O., Equations of state for the thermodynamic properties of R32 (difluoromethane) and R125 (pentafluoroethane). Int. J. Thermophys. 16:I (1995), 79–89.
Péneloux, A., Rauzy, E., Fréze, R., A consistent correction for Redlich–Kwong–Soave volumes. Fluid Phase Equilib. 8:1 (1982), 7–23.
Peng, D.-Y., Robinson, D.B., A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15:1 (1976), 59–64.
Poling, B.E., Prausnitz, J.M., O'Connell, J.P., The Properties of Gases and Liquids. Fifth ed., 2001, McGraw Hill.
Prengle, H.W., Greenhaus, L.R., York, R., Thermodynamic properties of n-butane. Chem. Eng. Prog. 44 (1948), 863–868.
Privat, R., Jaubert, J.-N., Guennec, Y.L., Incorporation of a volume translation in an equation of state for fluid mixtures: which combining rule? Which effect on properties of mixing?. Fluid Phase Equilib. 427 (2016), 414–420.
Qian, J.-W., Privat, R., Jaubert, J.-N., Coquelet, C., Ramjugernath, D., Fluid-phase-equilibrium prediction of fluorocompound-containing binary systems with the predictive E-PPR78 model. Int. J. Refrig. 73 (2017), 65–90.
Schmid, B., Gmehling, J., Revised parameters and typical results of the VTPR group contribution equation of state. Fluid Phase Equilib. 317 (2012), 110–126.
Schmid, B., Gmehling, J., Present status of the group contribution equation of state VTPR and typical applications for process development. Fluid Phase Equilib. 425 (2016), 443–450.
Schmid, B., Schedemann, A., Gmehling, J., Extension of the VTPR group contribution equation of state: group interaction parameters for additional 192 group combinations and typical results. Ind. Eng. Chem. Res. 53:8 (2014), 3393–3405.
Sliwinski, P., The Lorentz–Lorenz function of gaseous and liquid ethane, propane and butane. Z. Phys. Chem. (Munich) 63 (1969), 263–279.
Soave, G., Equilibrium constants from a modified Redlich–Kwong equation of state. Chem. Eng. Sci. 27 (1972), 1197–1203.
Storn, R., Price, K., Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Opt. 11:4 (1997), 341–359.
Thompson, R.T., Miller, R.C., Densities and dieletric constants of LPG components and mixtures at cryogenic storage conditions. Adv. Cryog. Eng., 26, 1980, 698.
Twu, C.H., Bluck, D., Cunningham, J.R., Coon, J.E., A cubic equation of state with a new alpha function and a new mixing rule. Fluid Phase Equilib. 69 (1991), 33–50.
Twu, C.H., Coon, J.E., Cunningham, J.R., A new generalized alpha function for a cubic equation of state: Part 1. Peng–Robinson equation. Fluid Phase Equilib. 105:1 (1995), 49–59.
Uchida, H., Sato, H., Watanabe, K., Measurements of gaseous PVTx properties and saturated vapor densities of refrigerant mixture R-125 + R-143a. Int. J. Thermophys. 20 (1999), 97–106.
Valderrama, J.O., The state of the cubic equations of state. Ind. Eng. Chem. Res. 42:8 (2003), 1603–1618.
Vasserman, A.A., Khasilev, I.P., Cymarnyi, V.A., Tables of Recommended Data. n-Butane. Pressure and Density of Liquid and Gas at Saturation. 1989, VNIIKI Tech. Rep. 604-kk.
van der Waals, J.D., Over de Continuiteit van den Gas- en Vloeistoftoestand. 1873, University of Leiden, Thesis.
Wei, Y.S., Sadus, R.J., Equations of state for the calculation of fluid-phase equilibria. AIChE J. 46:1 (2000), 169–196.
Widiatmo, J.V., Fujimine, T., Sato, H., Watanabe, K., Liquid densities of alternative refrigerants blended with difluoromethane, pentafluoroethane, and 1,1,1,2-tetrafluoroethane. J. Chem. Eng. Data 42 (1997), 270–277.
Widiatmo, J.V., Sato, H., Watanabe, K., Bubble-point pressures and liquid densities of binary R-125 + R-143a system. Int. J. Thermophys. 16 (1995), 801–810.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.