Corsten, M.F., Papageorgiou, A., Verhesen, W., Carai, P., Lindow, M., Obad, S., Summer, G., Coort, S.L., Hazebroek, M., van Leeuwen, R., et al. MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ. Res. 111 (2012), 415–425.
Heymans, S., Corsten, M.F., Verhesen, W., Carai, P., van Leeuwen, R.E., Custers, K., Peters, T., Hazebroek, M., Stöger, L., Wijnands, E., et al. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128 (2013), 1420–1432.
Melman, Y.F., Shah, R., Das, S., MicroRNAs in heart failure: is the picture becoming less miRky?. Circ Heart Fail 7 (2014), 203–214.
Pinti, M.V., Hathaway, Q.A., Hollander, J.M., Role of microRNA in metabolic shift during heart failure. Am. J. Physiol. Heart Circ. Physiol. 312 (2017), H33–H45.
Wang, J., Song, Y., Zhang, Y., Xiao, H., Sun, Q., Hou, N., Guo, S., Wang, Y., Fan, K., Zhan, D., et al. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice. Cell Res. 22 (2012), 516–527.
el Azzouzi, H., Leptidis, S., Dirkx, E., Hoeks, J., van Bree, B., Brand, K., McClellan, E.A., Poels, E., Sluimer, J.C., van den Hoogenhof, M.M., et al. The hypoxia-inducible microRNA cluster miR-199a∼214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation. Cell Metab. 18 (2013), 341–354.
Trajkovski, M., Hausser, J., Soutschek, J., Bhat, B., Akin, A., Zavolan, M., Heim, M.H., Stoffel, M., MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474 (2011), 649–653.
Wang, W.X., Danaher, R.J., Miller, C.S., Berger, J.R., Nubia, V.G., Wilfred, B.S., Neltner, J.H., Norris, C.M., Nelson, P.T., Expression of miR-15/107 family microRNAs in human tissues and cultured rat brain cells. Genomics Proteomics Bioinformatics 12 (2014), 19–30.
Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., Thomas, P.D., PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 45 (2017), D183–D189.
Wilfred, B.R., Wang, W.X., Nelson, P.T., Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol. Genet. Metab. 91 (2007), 209–217.
Schwenk, R.W., Dirkx, E., Coumans, W.A., Bonen, A., Klip, A., Glatz, J.F., Luiken, J.J., Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia 53 (2010), 2209–2219.
Dajani, A., AbuHammour, A., Treatment of nonalcoholic fatty liver disease: Where do we stand? an overview. Saudi J. Gastroenterol. 22 (2016), 91–105.
Herrera, B.M., Lockstone, H.E., Taylor, J.M., Ria, M., Barrett, A., Collins, S., Kaisaki, P., Argoud, K., Fernandez, C., Travers, M.E., et al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 53 (2010), 1099–1109.
Kraigher-Krainer, E., Shah, A.M., Gupta, D.K., Santos, A., Claggett, B., Pieske, B., Zile, M.R., Voors, A.A., Lefkowitz, M.P., Packer, M., et al., PARAMOUNT Investigators. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 63 (2014), 447–456.
Lohse, M.J., Engelhardt, S., Eschenhagen, T., What is the role of beta-adrenergic signaling in heart failure?. Circ. Res. 93 (2003), 896–906.
Frey, N., McKinsey, T.A., Olson, E.N., Decoding calcium signals involved in cardiac growth and function. Nat. Med. 6 (2000), 1221–1227.
Goldspink, D.F., Burniston, J.G., Tan, L.B., Cardiomyocyte death and the ageing and failing heart. Exp. Physiol. 88 (2003), 447–458.
Junqueira, L.C., Bignolas, G., Brentani, R.R., Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem. J. 11 (1979), 447–455.
Claycomb, W.C., Lanson, N.A. Jr., Stallworth, B.S., Egeland, D.B., Delcarpio, J.B., Bahinski, A., Izzo, N.J. Jr., HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc. Natl. Acad. Sci. USA 95 (1998), 2979–2984.
De Windt, L.J., Willemsen, P.H., Pöpping, S., Van der Vusse, G.J., Reneman, R.S., Van Bilsen, M., Cloning and cellular distribution of a group II phospholipase A2 expressed in the heart. J. Mol. Cell. Cardiol. 29 (1997), 2095–2106.
Dirkx, E., Schwenk, R.W., Coumans, W.A., Hoebers, N., Angin, Y., Viollet, B., Bonen, A., van Eys, G.J., Glatz, J.F., Luiken, J.J., Protein kinase D1 is essential for contraction-induced glucose uptake but is not involved in fatty acid uptake into cardiomyocytes. J. Biol. Chem. 287 (2012), 5871–5881.
Mdaki, K.S., Larsen, T.D., Weaver, L.J., Baack, M.L., Age Related Bioenergetics Profiles in Isolated Rat Cardiomyocytes Using Extracellular Flux Analyses. PLoS ONE, 11, 2016, e0149002.