[en] The stratospheric circulation is investigated using WACCM4 (Whole Atmosphere Community Climate Model version 4), together with BASCOE CTM (Belgian Assimilation System for Chemical Observations Chemistry-Transport Model) and a reanalysis of stratospheric composition observed by MLS: BRAM2 (BASCOE Reanalysis of AURA MLS release 2) over the period 2005-2015. Three different reanalyses of the wind fields (ERA-interim, JRA55 and MERRA2) are used to drive the CTM, providing an estimate of the uncertainties in our representation of the actual stratospheric circulation.
We use a long-lived tracer (N2O), and the Transformed Eulerian Mean (TEM) framework to analyse the tracer budget. We focus on the residual advection (mainly vertical) and eddy mixing (mainly horizontal) contributions to the N2O variations, studying the mean annual cycle and variability in the higher stratosphere and how it is depicted in the different datasets.
The BRAM2 mean annual cycle, for both the vertical and the horizontal terms, is nearly in the middle of the spread. WACCM is in good agreement concerning the vertical term but differs considerably from the other datasets in the horizontal (~mixing) term. WACCM present a smaller variability with respect to the reanalysis in the Tropical higher stratosphere, especially for the vertical term.
The next step of our research is to perform such analysis with the newer version of WACCM (version 6) as well as new BASCOE CTM runs using other reanalysis products. Multi-decadal changes in the terms of the budget, and their space dependence, will be investigated as well.
Prignon, Maxime ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Abalos, Marta; universidad Complutense de Madrid
Language :
English
Title :
Investigation of stratospheric circulation using long-lived tracers with WACCM, BASCOE CTM and a reanalysis of MLS observations