Anoxia; Cyclic electron flow; Cytochrome b6f; Photosynthesis; Photosystem I
Abstract :
[en] Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone oxidoreductase involved in the CEF mechanism.
Nawrocki, Wojciech J.; Institut de Biologie Physico-Chimique (Paris)
Bailleul, Benjamin; Institut de Biologie Physico-Chimique (Paris)
Cardol, Pierre ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues
Rappaport, Fabrice; Institut de Biologie Physico-Chimique (Paris)
Wollman, Françis Andrè; Institut de Biologie Physico-Chimique (Paris)
Joliot, Pierre A.; Institut de Biologie Physico-Chimique (Paris)
Language :
English
Title :
Maximal cyclic electron flow rate is independent of PGRL1 in Chlamydomonas.
Publication date :
2019
Journal title :
Biochimica et Biophysica Acta. Bioenergetics
ISSN :
0005-2728
eISSN :
1879-2650
Publisher :
Elsevier, Netherlands
Volume :
1860
Issue :
5
Pages :
425-432
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 682580 - BEAL - Bioenergetics in microalgae : regulation modes of mitochondrial respiration, photosynthesis, and fermentative pathways, and their interactions in secondary algae
Bendall, D.S., Manasse, R.S., Cyclic photophosphorylation and electron transport. Biochim. Biophys. Acta Bioenerg. 0005-2728, 1229(1), 1995, 23–38, 10.1016/0005-2728(94)00195-B.
Fan, D.Y., Fitzpatrick, D., Oguchi, R., Ma, W., Kou, J., Chow, W.S., Obstacles in the quantification of the cyclic electron flux around photosystem I in leaves of C3 plants. Photosynth. Res. 129 (2016), 239–251.
Tagawa, K., Tsujimoto, H.Y., Arnon, D.I., Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc. Natl. Acad. Sci. U. S. A. 49 (1963), 567–572.
Cleland, R.E., Bendall, D.S., Photosystem I cyclic electron transport: measurement of ferredoxin-plastoquinone reductase activity. Photosynth. Res. 34 (1992), 409–418.
Moss, D.A., Bendall, D.S., Cyclic electron transport in chloroplasts. The Q-cycle and the site of action of antimycin. Biochim. Biophys. Acta Bioenerg. 767 (1984), 389–395.
Hertle, A.P., Blunder, T., Wunder, T., Pesaresi, P., Pribil, M., Armbruster, U., Leister, D., PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol. Cell 49 (2013), 511–523.
Yamamoto, H., Peng, L., Fukao, Y., Shikanai, T., An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Cell 23 (2011), 1480–1493.
Desplats, C., Mus, F., Cuine, S., Billon, E., Cournac, L., Peltier, G., Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in chlamydomonas chloroplasts. J. Biol. Chem. 284 (2009), 4148–4157.
Jans, F., Mignolet, E., Houyoux, P.A., Cardol, P., Ghysels, B., Cuine, S., Cournac, L., Peltier, G., Remacle, C., Franck, F., A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc. Natl. Acad. Sci. U. S. A. 105 (2008), 20546–20551.
Nawrocki, W.J., Tourasse, N.J., Taly, A., Rappaport, F., Wollman, F.A., The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. Annu. Rev. Plant Biol. 66 (2015), 49–74.
Mitchell, P., The protonmotive Q cycle: a general formulation. FEBS Lett. 59 (1975), 137–139.
Alric, J., Lavergne, J., Rappaport, F., Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions. Biochim. Biophys. Acta 1797 (2010), 44–51.
Godaux, D., Bailleul, B., Berne, N., Cardol, P., Induction of photosynthetic carbon fixation in anoxia relies on hydrogenase activity and proton-gradient regulation-like1-mediated cyclic electron flow in Chlamydomonas reinhardtii. Plant Physiol. 168 (2015), 648–658.
Tagawa, K., Tsujimoto, H.Y., Arnon, D.I., Separation by monochromatic light of photosynthetic phosphorylation from oxygen evolution. Proc. Natl. Acad. Sci. U. S. A. 50 (1963), 544–549.
Houille-Vernes, L., Rappaport, F., Wollman, F.A., Alric, J., Johnson, X., Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 20820–20825.
Tolleter, D., Ghysels, B., Alric, J., Petroutsos, D., Tolstygina, I., Krawietz, D., Happe, T., Auroy, P., Adriano, J.M., Beyly, A., Cuine, S., Plet, J., Reiter, I.M., Genty, B., Cournac, L., Hippler, M., Peltier, G., Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23 (2011), 2619–2630.
Sacksteder, C.A., Kramer, D.M., Dark-interval relaxation kinetics (DIRK) of absorbance changes as a quantitative probe of steady-state electron transfer. Photosynth. Res. 66 (2000), 145–158.
Joliot, P., Joliot, A., Cyclic electron transfer in plant leaf. Proc. Natl. Acad. Sci. U. S. A. 99 (2002), 10209–10214.
Bailleul, B., Cardol, P., Breyton, C., Finazzi, G., Electrochromism: a useful probe to study algal photosynthesis. Photosynth. Res. 106 (2010), 179–189.
Brettel, K., Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim. Biophys. Acta Bioenerg. 1318 (1997), 322–373.
Joliot, P., Beal, D., Joliot, A., Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves. Biochim. Biophys. Acta 1656 (2004), 166–176.
Takahashi, H., Clowez, S., Wollman, F.A., Vallon, O., Rappaport, F., Cyclic electron flow is redox-controlled but independent of state transition. Nat. Commun., 4, 2013, 1954.
Nawrocki, W.J., Santabarbara, S., Mosebach, L., Wollman, F.A., Rappaport, F., State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas. Nat. Plants, 2, 2016, 16031.
Clowez, S., Godaux, D., Cardol, P., Wollman, F.A., Rappaport, F., The involvement of hydrogen-producing and ATP-dependent NADPH-consuming pathways in setting the redox poise in the chloroplast of Chlamydomonas reinhardtii in anoxia. J. Biol. Chem. 290 (2015), 8666–8676.
Finazzi, G., Rappaport, F., Furia, A., Fleischmann, M., Rochaix, J.D., Zito, F., Forti, G., Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep. 3 (2002), 280–285.
Alric, J., Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii: (II) involvement of the PGR5-PGRL1 pathway under anaerobic conditions. Biochim. Biophys. Acta 1837 (2014), 825–834.
Drop, B., Webber-Birungi, M., Fusetti, F., Kouril, R., Redding, K.E., Boekema, E.J., Croce, R., Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core. J. Biol. Chem. 286 (2011), 44878–44887.
Drop, B., Webber-Birungi, M., Yadav, S.K., Filipowicz-Szymanska, A., Fusetti, F., Boekema, E.J., Croce, R., Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1837 (2014), 63–72.
Ilik, P., Pavlovic, A., Kouril, R., Alboresi, A., Morosinotto, T., Allahverdiyeva, Y., Aro, E.M., Yamamoto, H., Shikanai, T., Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms. New Phytol. 214 (2017), 967–972.
Chaux, F., Burlacot, A., Mekhalfi, M., Auroy, P., Blangy, S., Richaud, P., Peltier, G., Flavodiiron proteins promote fast and transient O 2 photoreduction in Chlamydomonas. Plant Physiol. 174:3 (2017), 1825–1836, 10.1104/pp.17.00421.
Gerotto, C., Alboresi, A., Meneghesso, A., Jokel, M., Suorsa, M., Aro, E.M., Morosinotto, T., Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 12322–12327.
Forti, G., Caldiroli, G., State transitions in Chlamydomonas reinhardtii. The role of the Mehler reaction in state 2-to-state 1 transition. Plant Physiol. 137 (2005), 492–499.
Nandha, B., Finazzi, G., Joliot, P., Hald, S., Johnson, G.N., The role of PGR5 in the redox poising of photosynthetic electron transport. Biochim. Biophys. Acta 1767 (2007), 1252–1259.
Yamori, W., Shikanai, T., Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu. Rev. Plant Biol. 67 (2016), 81–106.
Munekage, Y., Hojo, M., Meurer, J., Endo, T., Tasaka, M., Shikanai, T., PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110 (2002), 361–371.
Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K.-I., Endo, T., Tasaka, M., Shikanai, T., Cyclic electron flow around photosystem I is essential for photosynthesis. Nature, 429, 2004, 579.
Johnson, X., Steinbeck, J., Dent, R.M., Takahashi, H., Richaud, P., Ozawa, S., Houille-Vernes, L., Petroutsos, D., Rappaport, F., Grossman, A.R., Niyogi, K.K., Hippler, M., Alric, J., Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of DeltaATpase pgr5 and DeltarbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii. Plant Physiol. 165 (2014), 438–452.
Iwai, M., Takizawa, K., Tokutsu, R., Okamuro, A., Takahashi, Y., Minagawa, J., Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464 (2010), 1210–1213.
Terashima, M., Petroutsos, D., Hudig, M., Tolstygina, I., Trompelt, K., Gabelein, P., Fufezan, C., Kudla, J., Weinl, S., Finazzi, G., Hippler, M., Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 17717–17722.
Alric, J., The plastoquinone pool, poised for cyclic electron flow?. Front. Plant Sci., 6, 2015, 540.