scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aizenberg, J., Hanson, J., Koetzle, T.F., Weiner, F., Addadi, L., Control of macromolecule distribution within synthetic and biogenic single calcite crystals. J. Am. Chem. Soc. 119 (1997), 881-886.
Andersson, A., Mackenzie, F., Bates, N., Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar. Ecol. Prog. Ser. 373 (2008), 265-273.
Calosi, P., Rastrick, S.P.S., Graziano, M., Thomas, S.C., Baggini, C., Carter, H.A., Hall-Spencer, J.M., Milazzo, M., Spicer, J.I., Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid-base and ion-regulatory abilities. Mar. Pollut. Bull. 73:2 (2013), 470-484.
Catarino, A.I., Guibourt, V., Moureaux, C., De Ridder, C., Compère, P., Dubois, P., Antarctic urchin Ctenocidaris speciosa spines: lessons from the deep. Cah. Biol. Mar., 54, 2013 659-655.
Chave, K.E., Aspects of the biogeochemistry of magnesium 1. Calcareous marine organisms. J. Geol., 62, 1954, 3.
Clarke, F.W., Wheeler, W.C., The Inorganic Constituents of Marine Invertebrates. 1922, Washington Government Printing Office 62.
Collard, M., Laitat, K., Moulin, L., Catarino, A., Grosjean, P., Dubois, P., Buffer capacity of the coelomic fluid in echinoderms. Comp. Biochem. Physiol. A 166 (2013), 199-206.
Collard, M., De Ridder, C., David, B., Dehairs, F., Dubois, P., Could Antarctic sea urchins be more resilient to near-future ocean acidification than expected?. Global Change Biol. 21 (2015), 605-617.
Collard, M., Rastrick, S.P.S., Calosi, P., Demolder, Y., Dille, J., Hall-Spencer, J.M., Milazzo, M., Moulin, L., Widdicombe, S., Dehairs, F., Dubois, P., The impact of ocean acidification and warming on the skeletal mechanical properties of the sea urchin Paracentrotus lividus from laboratory and field observations. ICES J. Mar. Sci. 73 (2016), 727-738.
David, B., Stock, R.S., De Carlo, F., Hétérier, V., De Ridder, C., Microstructures of Antarctic cidaroid spines: diversity of shapes and ectosymbiont attachments. Mar. Biol. 156:8 (2009), 1559-1572.
Dery, A., Guibourt, V., Catarino, A.I., Compère, P., Dubois, P., Properties, morphogenesis, and effect of acidification on spines of the cidaroid sea urchin Phyllacanthus imperialis. Invertebr. Biol. 133 (2014), 188-199.
Dery, A., Collard, M., Dubois, P., Ocean acidification reduces spine mechanical strength in euechinoid but not in cidaroid sea urchins. Environ. Sci. Technol. 51:7 (2017), 3640-3648.
Doncaster, C.P., Davey, A.J., Analysis of Variance and Covariance. 2007, Cambridge University Press, UK 288.
Dubois, P., The skeleton of postmetamorphic echinoderms in a changing world. Biol. Bull., 226, 2014, 3.
Gorzelak, P., Stolarski, J., Dery, A., Dubois, P., Escrig, S., Meibom, A., Ultrascale and microscale growth dynamics of the cidaroid spine of Phyllacanthus imperialis revealed by 26Mg labeling and NanoSIMS isotopic imaging. J. Morphol. 275 (2014), 788-796.
Gorzelak, P., Dery, A., Dubois, P., Stolarski, J., Sea urchin growth dynamics at microstructural length scale revealed by Mn-labeling and cathodoluminescence imaging. Front. Zool., 2017, 14-42.
Gran, G., Determination of the equivalence point in potentiometric titrations. Part II. Analyst 77 (1952), 661-671.
Hazan, Y., Wangensteen, O.S., Fine, M., Tough as a rock-boring urchin: adult Echinometra sp. EE from the Red Sea show high resistance to ocean acidification over long-term exposures. Mar. Biol. 161:11 (2014), 2531-2545.
Heatfield, B.M., Growth of the calcareous skeleton during regeneration of spines of the sea urchin, Strongylocentrotus purpuratus (stimpson): a light and scanning electron microscopic study. J. Morphol. 134 (1971), 57-89.
Hermans, J., André L., Navez, J., Pernet, P., Dubois, P., Relative influences of solution composition and presence of intracrystalline proteins on magnesium incorporation in calcium carbonate minerals: insight into vital effects. J. Geophys. Res., 116, 2011.
Lebrato, M., Andersson, A.J., Ries, J.B., Aronson, R.B., Lamare, L.B., Koeve, W., Oschlies, A., Iglesias-Rodriguez, M.D., Thatje, S., Amsler, M., Vos, S.C., Jones, D.A.B., Ruhl, H.A., Gates, A.R., McClintock, J.B., Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide. Global Biogeochem. Cycles 30:7 (2016), 1038-1053.
Loste, E., Wilson, M., Seshadri, R., Meldrum, F.C., The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. J. Cryst. Growth 254 (2003), 206-218.
Magdans, U., Gies, H., Systematic investigations of the Ca/Mg distribution as a function of habitat of the sea urchin and the sample location in the spine. Eur. J. Mineral 16:2 (2004), 261-268.
Märkel, K., Kubanek, F., Willgallis, A., Polykristal- liner Calcit bei Seeigeln (Echinodermata, Echinoidea). Z. Zellforsch 119 (1971), 355-377.
Märkel, K., Röser, U., The spine tissues in the echinoid Eucidaris tribuloides. Zoomorphology 103 (1983), 25-41.
McClintock, J.B., Amsler, M.O., Angus, R.A., Challener, R.C., Schram, J.B., Amsler, C.D., Mah, C.L., Cuce, J., Baker, B.J., The Mg-calcite composition of Antarctic echinoderms: important implications for predicting the impacts of ocean acidification. J. Geol. 119 (2011), 457-466.
Moulin, L., Grosjean, P., Leblud, J., Batigny, A., Collard, M., Dubois, P., Long-term mesocosms study of the effects of ocean acidification on growth and physiology of the sea urchin Echinometra mathaei. Mar. Environ. Res. 103 (2015), 103-114.
Moureaux, C., Perez-Huerta, A., Compere, P., Zhu, W., LeLoup, T., Cusack, M., Dubois, P., Structure, composition and mechanical relations to function in sea urchin spine. J. Struct. Biol. 170 (2010), 41-49.
Morse, J.W., Andersson, A.J., Mackenzie, F.T., Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites. Geochem. Cosmochim. Acta 70 (2006), 5814-5830.
Peck, V.L., Tarling, G.A., Manno, C., Harper, E.M., Tynan, E., Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification. Deep Sea Res. Part II Top. Stud. Oceanogr. 127 (2016), 41-52.
Plummer, L.N., Mackenzie, F.T., Predicting mineral solubility from rate data; application to the dissolution of magnesian calcites. Am. J. Sci. 274 (1974), 61-83.
Politi, Y., Sea Urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306 (2004), 1161-1164.
Raz, S., Hamilton, P.C., Wilt, F.H., Weiner, S., Addadi, L., The transient phase of amorphous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilization. Adv. Funct. Mater. 13 (2003), 480-486.
Sewell, M.A., Hofmann, G.E., Antarctic echinoids and climate change: a major impact on the brooding forms. Global Change Biol. 17 (2010), 734-744.
Smith, A.M., Clark, D.E., Lamare, M.D., Winter, D.J., Byrne, M., Risk and resilience: variations in magnesium in echinoid skeletal calcite. Mar. Ecol. Prog. Ser. 561 (2016), 1-16.
Thomsen, J., Gutowska, M.A., Saphörster, J., Heinemann, A., Trübenbach, K., Fietzke, J., Hiebenthal, C., Eisenhauer, A., Körtzinger, A., Wahl, M., Melzner, F., Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7 (2010), 3879-3891.
Tunnicliffe, V., Davies, K.T.A., Butterfield, D.A., Embley, R.W., Rose, J.M., Chadwick, W.W. Jr., Survival of mussels in extremely acidic waters on a submarine volcano. Nat. Geosci. 2 (2009), 344-348.
Twitchett, R.J., Oji, T., Early Triassic recovery of echinoderms. C. R. Palevol 4 (2005), 531-542.
Uthicke, S., Liddy, M., Nguyen, H.D., Byrne, M., Interactive effects of near-future temperature increase and ocean acidification on physiology and gonad development in adult Pacific sea urchin, Echinometra sp. A. Coral Reefs 33:3 (2014), 831-845.
Weber, J.N., The incorporation of magnesium into the skeletal calcites of echinoderms. Am. J. Sci. 267 (1969), 537-566.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.