[en] The first aim of this study is to determine if changes in precipitation and more specifically in convective precipitation are projected in a warmer climate over Belgium. The second aim is to evaluate if these changes are dependent on the convective scheme used. For this purpose, the regional climate model Modèle Atmosphérique Régional (MAR) was forced by two general circulation models (NorESM1-M and MIROC5) with five convective schemes (namely: two versions of the Bechtold schemes, the Betts–Miller–Janjić scheme, the Kain–Fritsch scheme, and the modified Tiedtke scheme) in order to assess changes in future precipitation quantities/distributions and associated uncertainties. In a warmer climate (using RCP8.5), our model simulates a small increase of convective precipitation, but lower than the anomalies and the interannual variability over the current climate, since all MAR experiments simulate a stronger warming in the upper troposphere than in the lower atmospheric layers, favoring more stable conditions. No change is also projected in extreme precipitation nor in the ratio of convective precipitation. While MAR is more sensitive to the convective scheme when forced by GCMs than when forced by ERA-Interim over the current climate, projected changes from all MAR experiments compare well.
Research Center/Unit :
UR SPHERES, ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Doutreloup, Sébastien ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Kittel, Christoph ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Wyard, Coraline
Belleflamme, Alexandre
Amory, Charles ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Erpicum, Michel ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Language :
English
Title :
Precipitation Evolution over Belgium by 2100 and Sensitivity to Convective Schemes Using the Regional Climate Model MAR
Publication date :
12 June 2019
Journal title :
Atmosphere
eISSN :
2073-4433
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Switzerland
Special issue title :
Special Issue "Precipitation and Climate Change: Accomplishments and Challenges"
Volume :
10
Issue :
321
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Richter, I.; Xie, S.P. Muted precipitation increase in global warming simulations: A surface evaporation perspective. J. Geophys. Res. 2008, 113, D24118
Trenberth, K. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123-138
Collins, M.; Arblaster, J.; Dufresne, J.L.; Fichefet, L.; Friedlingstein, P.; Gao, X.; Gutowski,W.J.J.; Johns, T.; Krinner, G.; Shongwe, M.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1029-1136. ISBN 9781107415324
Pfahl, S.; O'Gorman, P.A.; Fischer, E.M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Chang. 2017, 7, 423-427
Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90-104
Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563-578
Stocker, T.F.; Qin, D.; Plattner, G.; Alexander, L.; Allen, S.; Bindoff, N.; Bréon, F.; Church, J.; Cubasch, U.; Emori, S.; et al. Technical Summary. In Climate Change 2013: The Physical Science Basis. Contribution ofWorking Group I; Combridge University Press: Cambridge, UK; New York, NY, USA, 2013
Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698-709
Olesen, J.E.; Carter, T.R.; Díaz-Ambrona, C.H.; Fronzek, S.; Heidmann, T.; Hickler, T.; Holt, T.; Minguez, M.I.; Morales, P.; Palutikof, J.P.; et al. Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Clim. Chang. 2007, 81, 123-143
Baguis, P.; Roulin, E.; Willems, P.; Ntegeka, V. Climate change scenarios for precipitation and potential evapotranspiration over central Belgium. Theor. Appl. Climatol. 2010, 99, 273-286
Tabari, H.; Taye, M.T.; Willems, P. Water availability change in central Belgium for the late 21st century. Glob. Planet. Chang. 2015, 131, 115-123
Vanden Broucke, S.; Wouters, H.; Demuzere, M.; van Lipzig, N.P.M. The influence of convection-permitting regional climate modeling on future projections of extreme precipitation: Dependency on topography and timescale. Clim. Dyn. 2018, 1-22
Anagnostou, E.N. A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteorol. Appl. 2004, 11, 291-300
Chou, C.; Neelin, J.D. Mechanisms of GlobalWarming Impacts on Regional Tropical Precipitation. J. Clim. 2004, 17, 2688-2701
Berg, P.; Moseley, C.; Haerter, J.O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 2013, 6, 181-185
Daniels, E.E.; Lenderink, G.; Hutjes, R.W.A.; Holtslag, A.A.M. Spatial precipitation patterns and trends in The Netherlands during 1951-2009. Int. J. Climatol. 2014, 34, 1773-1784
Hosseinzadehtalaei, P.; Tabari, H.; Willems, P. Uncertainty assessment for climate change impact on intense precipitation: How many model runs do we need? Int. J. Climatol. 2017, 37, 1105-1117
Van Uytven, E.;Willems, P. Greenhouse gas scenario sensitivity and uncertainties in precipitation projections for central Belgium. J. Hydrol. 2018, 558, 9-19
Doutreloup, S.; Wyard, C.; Amory, C.; Kittel, C.; Erpicum, M.; Fettweis, X. Sensitivity to Convective Schemes on Precipitation Simulated by the Regional Climate Model MAR over Belgium (1987-2017). Atmosphere 2019, 10, 34
Erpicum, M.; Nouri, M.; Demoulin, A. The climate of Belgium and Luxembourg. In Landscapes and Landforms of Belgium and Luxembourg; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 35-41
Poelman, D.R.A10-Year Study on the Characteristics of Thunderstorms in Belgium Based on Cloud-to-Ground Lightning Data. Mon. Weather Rev. 2014, 142, 4839-4849
Gallée, H.; Schayes, G. Development of a Three-Dimensional Meso-Primitive Equation Model: Katabatic Winds Simulation in the Area of Terra Nova Bay, Antarctica. Mon. Weather Rev. 1994, 122, 671-685
Fettweis, X.; Box, J.E.; Agosta, C.; Amory, C.; Kittel, C.; Lang, C.; van As, D.; Machguth, H.; Gallée, H. Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 2017, 11, 1015-1033
Fettweis, X.; Franco, B.; Tedesco, M.; van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R.; Gallée, H. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 2013, 7, 469-489
Kittel, C.; Amory, C.; Agosta, C.; Delhasse, A.; Doutreloup, S.; Huot, P.-V.; Wyard, C.; Fichefet, T.; Fettweis, X. Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR. Cryosphere 2018, 12, 3827-3839
Agosta, C.; Amory, C.; Kittel, C.; Orsi, A.; Favier, V.; Gallée, H.; van den Broeke, M.R.; Lenaerts, J.T.M.; van Wessem, J.M.; van de Berg,W.J.; et al. Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979-2015) and identification of dominant processes. Cryosphere 2019, 13, 281-296
Wyard, C.; Scholzen, C.; Fettweis, X.; Van Campenhout, J.; François, L. Decrease in climatic conditions favouring floods in the south-east of Belgium over 1959-2010 using the regional climate model MAR. Int. J. Climatol. 2017, 37, 2782-2796
Wyard, C.; Doutreloup, S.; Belleflamme, A.; Wild, M.; Fettweis, X. Global Radiative Flux and Cloudiness Variability for the Period 1959-2010 in Belgium: A Comparison between Reanalyses and the Regional Climate Model MAR. Atmosphere 2018, 9, 262
Brasseur, O. Development and Application of a Physical Approach to Estimating Wind Gusts. Mon. Weather Rev. 2001, 129, 5-25
Brasseur, O.; Gallée, H.; Creutin, J.-D.; Lebel, T.; Marbaix, P. High Resolution Simulations of Precipitation over the Alps with the Perspective of Coupling to Hydrological Models; Springer: Dordrecht, Netherlands, 2002; pp. 75-99
Fettweis, X.; Wyard, C.; Doutreloup, S.; Belleflamme, A. Noël 2010 En Belgique: Neige En Flandre Et Pluie En Haute-Ardenne. Bull. la Société Géographique Liège 2017, 68, 97-107
Termonia, P.; Van Schaeybroeck, B.; De Cruz, L.; De Troch, R.; Caluwaerts, S.; Giot, O.; Hamdi, R.; Vannitsem, S.; Duchêne, F.;Willems, P.; et al. The CORDEX.be initiative as a foundation for climate services in Belgium. Clim. Serv. 2018
Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553-597
Watanabe, M.; Suzuki, T.; O'ishi, R.; Komuro, Y.;Watanabe, S.; Emori, S.; Takemura, T.; Chikira, M.; Ogura, T.; Sekiguchi, M.; et al. Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity. J. Clim. 2010, 23, 6312-6335
Bentsen, M.; Bethke, I.; Debernard, J.B.; Iversen, T.; Kirkevåg, A.; Seland, Ø.; Drange, H.; Roelandt, C.; Seierstad, I.A.; Hoose, C.; et al. The Norwegian Earth System Model, NorESM1-M-Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev. 2013, 6, 687-720
Connolley, W.M.; Bracegirdle, T.J. An Antarctic assessment of IPCC AR4 coupled models. Geophys. Res. Lett. 2007, 34, L22505
Wyard, C. Climate change in Belgium: Recent and Future Evolution of Global Radiation and Hydroclimatic Conditions Favouring Floods Using the Regional Climate Model MAR. Ph.D. Thesis, University of Liège, Liège, Belgium, 3 December 2018
Lang, C.; Fettweis, X.; Erpicum, M. Future climate and surface mass balance of Svalbard glaciers in an RCP8.5 climate scenario: A study with the regional climate model MAR forced by MIROC5. Cryosphere 2015, 9, 945-956
Bechtold, P.; Bazile, E.; Guichard, F.; Mascart, P.; Richard, E. A mass-flux convection scheme for regional and global models. Q. J. R. Meteorol. Soc. 2001, 127, 869-886
Lac, C.; Chaboureau, J.-P.; Masson, V.; Pinty, J.-P.; Tulet, P.; Escobar, J.; Leriche, M.; Barthe, C.; Aouizerats, B.; Augros, C.; et al. Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev. Discuss. 2018, 1-66
Betts, A.K.; Miller, M.J. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q. J. R. Meteorol. Soc. 1986, 112, 693-709
Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927-945
Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Barker, D.; Duda, G.; Huang, X.; Wang, W.; Powers, G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note NCAR/TN-475+STR; Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research: Boulder, CO, USA, 2008
Kain, J.S. The Kain-Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170-181
Zhang, C.;Wang, Y.; Hamilton, K. Improved Representation of Boundary Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme. Mon. Weather Rev. 2011, 139, 3489-3513
Tiedtke, M. A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. Mon. Weather Rev. 1989, 117, 1779-1800
Hawkins, E.; Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 2011, 37, 407-418
Belleflamme, A.; Fettweis, X.; Erpicum, M. Do global warming-induced circulation pattern changes affect temperature and precipitation over Europe during summer? Int. J. Climatol. 2015, 35, 1484-1499
Rajczak, J.; Pall, P.; Schär, C. Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J. Geophys. Res. Atmos. 2013, 118, 3610-3626
Nikulin, G.; Kjellströ, M.E.; Hansson, U.; Strandberg, G.; Ullerstig, A. Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A Dyn. Meteorol. Oceanogr. 2011, 63, 41-55
Saeed, S.; Brisson, E.; Demuzere, M.; Tabari, H.; Willems, P.; Van Lipzig, N.P.M.; Saeed, S. Multidecadal convection permitting climate simulations over Belgium: Sensitivity of future precipitation extremes. Atmospjeric Sci. Lett. 2017, 18, 29-36
Brouwers, J.; Peeters, B.; Van Steertegem, M.; van Lipzig, N.; Wouters, H.; Beullens, J.; Demuzere, M.; Willems, P.; De Ridder, K.; Maiheu, B.; et al. MIRA Climate Report 2015, about Observed and Future Climate Changes in Flanders and Belgium; Flanders Environment Agency: Aalst, Belgium, 2015