[en] The activation of N-methyl-D-aspartate receptors (NMDARs) in substantia nigra pars
compacta (SNc) dopamine (DA) cells is central to generate the bursting activity, a
phasic signal linked to DA related behaviors via the change in postsynaptic DA
release. NMDARs are recruited during excitatory synaptic transmission by glutamate
release but the glycine site level of occupancy of these receptors during basal action
potential-dependent activity is not known for SNc DA neurons. We explored NMDARdependent
signals during exogenous applications of co-agonists in midbrain slices
from juvenile rats. We found that both glycine and D-serine strengthened the
NMDAR-dependent component of excitatory postsynaptic currents (EPSCs) in a
concentration-dependent manner. EPSCs were also increased by endogenous
glycine via the blockade of the glycine transport. The glycine site of NMDARs
contributing to synaptic transmission is therefore subsaturated. The behaviorally
relevant burst firing was more sensitive to exogenous D-serine and endogenous
glycine than to exogenous glycine. The mechanisms regulating the availability of the
co-agonists exert consequently a critical influence on the excitability of DA neurons
via NMDARs.
The modulation of the phasic firing in DA neurons by ambient NMDAR co-agonists
may be important for nigral information processing and downstream motor-related
behavior.
Research Center/Unit :
Giga-Neurosciences - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Destreel, Geoffrey ; Université de Liège - ULiège > Neurosciences-Neurophysiology
Seutin, Vincent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Engel, Dominique ; Université de Liège - ULiège > Neurosciences-Neurophysiology
Language :
English
Title :
Subsaturation of the NMDAR glycine site allows the regulation of bursting activity in juvenile rat nigral dopamine neurons
Alternative titles :
[en] La sous-saturation du site de la glycine des récepteurs NMDA permet la régulation de l'activité en bouffée dans les neurones à dopamine de la substance noire compacte de rat juvénile
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Albers, D. S., Weiss, S. W., Iadarola, M. J., & Standaert, D. G. (1999). Immunohistochemical localization of N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunits in the substantia nigra pars compacta of the rat. Neuroscience, 89, 209–220.
Ballard, T. M., Pauly-Evers, M., Higgins, G. A., Ouagazzal, A.-M., Mutel, V., Borroni, E., … Kew, J. N. C. (2002). Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity. Journal of Neuroscience, 22, 6713–6723.
Berger, A. J., Dieudonné, S., & Ascher, P. (1998). Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. Journal of Neurophysiology, 80, 3336–3340.
Bergeron, R., Meyer, T. M., Coyle, J. T., & Greene, R. W. (1998). Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proceedings of the National Academy of Sciences, 95, 15730–15734.
Billups, D., & Attwell, D. (2003). Active release of glycine or D-serine saturates the glycine site of NMDA receptors at the cerebellar mossy fibre to granule cell synapse. European Journal of Neuroscience, 18, 2975–2980.
Blythe, S. N., Atherton, J. F., & Bevan, M. D. (2007). Synaptic activation of dendritic AMPA and NMDA receptors generates transient high-frequency firing in substantia nigra dopamine neurons in vitro. Journal of Neurophysiology, 97, 2837–2850.
Brickley, S. G., Misra, C., Mok, M. H. S., Mishina, M., & Cull-Candy, S. G. (2003). NR2B and NR2D subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites. Journal of Neuroscience, 23, 4958–4966.
Brothwell, S. L. C., Barber, J. L., Monaghan, D. T., Jane, D. E., Gibb, A. J., & Jones, S. (2008). NR2B- and NR2D-containing synaptic NMDA receptors in developing rat substantia nigra pars compacta dopaminergic neurones. Journal of Physiology, 586, 739–750.
Buchanan, K. A., Petrovic, M. M., Chamberlain, S. E. L., Marrion, N. V., & Mellor, J. R. (2010). Facilitation of long-term potentiation by muscarinic M1 receptors is mediated by inhibition of SK channels. Neuron, 68, 948–963.
Burgard, E. C., & Hablitz, J. J. (1993). NMDA receptor-mediated components of miniature excitatory synaptic currents in developing rat neocortex. Journal of Neurophysiology, 70, 1841–1852.
Chatha, B. T., Bernard, V., Streit, P., & Bolam, J. P. (2000). Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra. Neuroscience, 101, 1037–1051.
Chen, L., Muhlhauser, M., & Yang, C. R. (2003). Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. Journal of Neurophysiology, 89, 691–703.
Chergui, K., Charléty, P. J., Akaoka, H., Saunier, C. F., Brunet, J.-L., Buda, M., … Chouvet, G. (1993). Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo. European Journal of Neuroscience, 5, 137–144.
Choi, Y. M., Kim, S. H., Uhm, D. Y., & Park, M. K. (2003). Glutamate-mediated [Ca2+]c dynamics in spontaneously firing dopamine neurons of the rat substantia nigra pars compacta. Journal of Cell Science, 116, 2665–2675.
Cubelos, B., Giménez, C., & Zafra, F. (2005). Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cerebral Cortex, 15, 448–459.
Currás, M. C., & Pallotta, B. S. (1996). Single-channel evidence for glycine and NMDA requirement in NMDA receptor activation. Brain Research, 740, 27–40.
Deister, C. A., Teagarden, M. A., Wilson, C. J., & Paladini, C. A. (2009). An intrinsic neuronal oscillator underlies dopaminergic neuron bursting. Journal of Neuroscience, 29, 15888–15897.
Dopico, J. G., González-Hernández, T., Pérez, I. M., García, I. G., Abril, A. M., Inchausti, J. O., & Rodríguez Díaz, M. (2006). Glycine release in the substantia nigra: Interaction with glutamate and GABA. Neuropharmacology, 50, 548–557.
Dufour, M. A., Woodhouse, A., Amendola, J., & Goaillard, J.-M. (2014). Non-linear developmental trajectory of electrical phenotype in rat substantia nigra pars compacta dopaminergic neurons. Elife, 3, 1–28.
Engel, D., & Seutin, V. (2015). High dendritic expression of Ih in the proximity of the axon origin controls the integrative properties of nigral dopamine neurons. Journal of Physiology, 593, 4905–4922.
Faber, E. S. L., Delaney, A. J., & Sah, P. (2005). SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala. Nature Neuroscience, 8, 635–641.
Ferreira, J. S., Papouin, T., Ladépêche, L., Yao, A., Langlais, V. C., Bouchet, D., … Groc, L. (2017). Co-agonists differentially tune GluN2B-NMDA receptor trafficking at hippocampal synapses. Elife, 6, 1–22.
Fiorillo, C. D., & Williams, J. T. (2000). Cholinergic inhibition of ventral midbrain dopamine neurons. Journal of Neuroscience, 20, 7855–7860.
Forsythe, I. D., & Westbrook, G. L. (1988). Slow excitatory postsynaptic currents mediated by N-methyl-D-aspartate receptors on cultured mouse central neurones. Journal of Physiology, 396, 515–533.
Fossat, P., Turpin, F. R., Sacchi, S., Dulong, J., Shi, T., Rivet, J. M., … Mothet, J. P. (2012). Glial D-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cerebral Cortex, 22, 595–606.
Foster, A. C., Farnsworth, J., Lind, G. E., Li, Y.-X., Yang, J.-Y., Dang, V., … Kavanaugh, M. P. (2016). D-serine is a substrate for neutral amino acid transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and is transported by both subtypes in rat hippocampal astrocyte cultures. PLoS ONE, 11, e0156551.
Gustafson, E. C., Morgans, C. W., Tekmen, M., Sullivan, S. J., Esguerra, M., Konno, R., & Miller, R. F. (2013). Retinal NMDA receptor function and expression are altered in a mouse lacking D-amino acid oxidase. Journal of Neurophysiology, 110, 2718–2726.
Hage, T. A., & Khaliq, Z. M. (2015). Tonic firing rate controls dendritic Ca2+ signaling and synaptic gain in substantia nigra dopamine neurons. Journal of Neuroscience, 35, 5823–5836.
Hage, T. A., Sun, Y., & Khaliq, Z. M. (2016). Electrical and Ca2+ signaling in dendritic spines of substantia nigra dopaminergic neurons. Elife, 5, 1–26.
Harnett, M. T., Bernier, B. E., Ahn, K.-C., & Morikawa, H. (2009). Burst-timing-dependent plasticity of NMDA receptor-mediated transmission in midbrain dopamine neurons. Neuron, 62, 826–838.
Harsing, L. G., & Matyus, P. (2013). Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: The role of synaptic and non-synaptic glycine transporters. Brain Research Bulletin, 93, 110–119.
Häusser, M., Stuart, G., Racca, C., & Sakmann, B. (1995). Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron, 15, 637–647.
Helboe, L., Egebjerg, J., Møller, M., & Thomsen, C. (2003). Distribution and pharmacology of alanine-serine-cysteine transporter 1 (asc-1) in rodent brain. European Journal of Neuroscience, 18, 2227–2238.
Hopf, F. W., Martin, M., Chen, B. T., Bowers, M. S., Mohamedi, M. M., & Bonci, A. (2007). Withdrawal from intermittent ethanol exposure increases probability of burst firing in VTA neurons in vitro. Journal of Neurophysiology, 98, 2297–2310.
Jang, M., Um, K. B., Jang, J., Kim, H. J., Cho, H., Chung, S., & Park, M. K. (2015). Coexistence of glutamatergic spine synapses and shaft synapses in substantia nigra dopamine neurons. Scientific Reports, 5, 14773.
Jastrzebska, K., Walczak, M., Cieslak, P. E., Szumiec, L., Turbasa, M., Engblom, D., … Parkitna, J. R. (2016). Loss of NMDA receptors in dopamine neurons leads to the development of affective disorder-like symptoms in mice. Scientific Reports, 6, 1–11.
Ji, H., & Shepard, P. D. (2006). SK Ca2+-activated K+ channel ligands alter the firing pattern of dopamine-containing neurons in vivo. Neuroscience, 140, 623–633.
Johnson, J. W., & Ascher, P. (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature, 325, 529–531.
Jones, S., & Gibb, A. J. (2005). Functional NR2B- and NR2D-containing NMDA receptor channels in rat substantia nigra dopaminergic neurones. Journal of Physiology, 569, 209–221.
Kampa, B. M., Clements, J., Jonas, P., & Stuart, G. J. (2004). Kinetics of Mg2+ unblock of NMDA receptors: Implications for spike-timing dependent synaptic plasticity. Journal of Physiology, 556, 337–345.
Kemp, J. A., Foster, A. C., Leeson, P. D., Priestley, T., Tridgett, R., Iversen, L. L., & Woodruff, G. N. (1988). 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. Proceedings of the National Academy of Sciences, 85, 6547–6550.
Kitai, S. T., Shepard, P. D., Callaway, J. C., & Scroggs, R. (1999). Afferent modulation of dopamine neuron firing patterns. Current Opinion in Neurobiology, 9, 690–697.
Kleckner, N. W., & Dingledine, R. (1988). Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science, 241, 835–837.
Lacey, M. G., Mercuri, N. B., & North, R. A. (1989). Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids. Journal of Neuroscience, 9, 1233–1241.
Le Bail, M., Martineau, M., Sacchi, S., Yatsenko, N., Radzishevsky, I., Conrod, S., … Mothet, J.-P. (2015). Identity of the NMDA receptor coagonist is synapse specific and developmentally regulated in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 112, E204–E213.
Li, Y., Krupa, B., Kang, J.-S., Bolshakov, V. Y., & Liu, G. (2009). Glycine site of NMDA receptor serves as a spatiotemporal detector of synaptic activity patterns. Journal of Neurophysiology, 102, 578–589.
Li, Y., Sacchi, S., Pollegioni, L., Basu, A. C., Coyle, J. T., & Bolshakov, V. Y. (2013). Identity of endogenous NMDAR glycine site agonist in amygdala is determined by synaptic activity level. Nature Communications, 4, 1760.
Marinelli, M., & McCutcheon, J. E. (2014). Heterogeneity of dopamine neuron activity across traits and states. Neuroscience, 282, 176–197.
Martina, M., Krasteniakov, N. V., & Bergeron, R. (2003). D-Serine differently modulates NMDA receptor function in rat CA1 hippocampal pyramidal cells and interneurons. Journal of Physiology, 548, 411–423.
Martineau, M., Parpura, V., & Mothet, J. P. (2014). Cell-type specific mechanisms of D-serine uptake and release in the brain. Frontiers in Synaptic Neuroscience, 6, 12.
Mayer, M. L., Westbrook, G. L., & Guthrie, P. B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature, 309, 261–263.
McBain, C., & Dingledine, R. (1992). Dual-component miniature excitatory synaptic currents in rat hippocampal CA3 pyramidal neurons. Journal of Neurophysiology, 68, 16–27.
Mereu, G., Costa, E., Armstrong, D. M., & Vicini, S. (1991). Glutamate receptor subtypes mediate excitatory synaptic currents of dopamine neurons in midbrain slices. Journal of Neuroscience, 11, 1359–1366.
Miya, K., Inoue, R., Takata, Y., Abe, M., Natsume, R., Sakimura, K., … Mori, H. (2008). Serine racemase is predominantly localized in neurons in mouse brain. Journal of Comparative Neurology, 510, 641–654.
Moreno, S., Nardacci, R., Cimini, A., & Ceru, M. P. (1999). Immunocytochemical localization of D-amino acid oxidase in rat brain. Journal of Neurocytology, 28, 169–185.
Morris, P. G., Mishina, M., & Jones, S. (2018). Altered synaptic and extrasynaptic NMDA receptor properties in substantia nigra dopaminergic neurons from mice lacking the GluN2D subunit. Frontiers in Cellular Neuroscience, 12, 1–12.
Mothet, J.-P., Le Bail, M., & Billard, J.-M. (2015). Time and space profiling of NMDA receptor co-agonist functions. Journal of Neurochemistry, 135, 210–225.
Mothet, J.-P., Parent, A. T., Wolosker, H., Brady, R. O., Linden, D. J., Ferris, C. D., … Snyder, S. H. (2000). D-Serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proceedings of the National Academy of Sciences, 97, 4926–4931.
Nevian, T., & Sakmann, B. (2004). Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex. Journal of Neuroscience, 24, 1689–1699.
Ngo-Anh, T. J., Bloodgood, B. L., Lin, M., Sabatini, B. L., Maylie, J., & Adelman, J. P. (2005). SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nature Neuroscience, 8, 642–649.
Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., & Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 307, 462–465.
Overton, P., & Clark, D. (1997). Burst firing in midbrain dopaminergic neurons. Brain Research Reviews, 25, 312–334.
Papouin, T., Henneberger, C., Rusakov, D. A., & Oliet, S. H. R. (2017). Astroglial versus neuronal D-serine: Fact checking. Trends in Neurosciences, 40, 517–520.
Papouin, T., Ladépêche, L., Ruel, J., Sacchi, S., Labasque, M., Hanini, M., … Oliet, S. H. R. (2012). Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell, 150, 633–646.
Pearlstein, E., Gouty-Colomer, L.-A., Michel, F. J., Cloarec, R., & Hammond, C. (2015). Glutamatergic synaptic currents of nigral dopaminergic neurons follow a postnatal developmental sequence. Frontiers in Cellular Neuroscience, 9, 210.
Piña-Crespo, J. C., & Gibb, A. J. (2002). Subtypes of NMDA receptors in new-born rat hippocampal granule cells. Journal of Physiology, 541, 41–64.
Priestley, T., Laughton, P., Myers, J., Le Bourdellés, B., Kerby, J., & Whiting, P. J. (1995). Pharmacological properties of recombinant human N-methyl-D-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fibroblast cells. Molecular Pharmacology, 48, 841–848.
Ribeiro, C. S., Reis, M., Panizzutti, R., De Miranda, J., & Wolosker, H. (2002). Glial transport of the neuromodulator D-serine. Brain Research, 929, 202–209.
Schell, M. J., Brady, R. O., Molliver, M. E., & Snyder, S. H. (1997). D-serine as a neuromodulator: Regional and developmental localizations in rat brain glia resemble NMDA receptors. Journal of Neuroscience, 17, 1604–1615.
Schmitz, Y., Castagna, C., Mrejeru, A., Lizardi-Ortiz, J. E., Klein, Z., Lindsley, C. W., & Sulzer, D. (2013). Glycine transporter-1 inhibition promotes striatal axon sprouting via NMDA receptors in dopamine neurons. Journal of Neuroscience, 33, 16778–16789.
Schultz, W. (2016). Dopamine reward prediction- error signalling: A two-component response. Nature Reviews Neuroscience, 17, 183–195.
Schweimer, J. V., Coullon, G. S. L., Betts, J. F., Burnet, P. W. J., Engle, S. J., Brandon, N. J., … Sharp, T. (2014). Increased burst-firing of ventral tegmental area dopaminergic neurons in d-amino acid oxidase knockout mice in vivo. European Journal of Neuroscience, 40, 2999–3009.
Seutin, V., & Engel, D. (2010). Differences in Na+ conductance density and Na+ channel functional properties between dopamine and GABA neurons of the rat substantia nigra. Journal of Neurophysiology, 103, 3099–3114.
Seutin, V., Johnson, S. W., & North, R. A. (1993). Apamin increases NMDA-induced burst-firing of rat mesencephalic dopamine neurons. Brain Research, 630, 341–344.
Shimizu, S., Sogabe, S., Yanagisako, R., Inada, A., Yamanaka, M., Iha, H. A., & Ohno, Y. (2017). Glycine-binding site stimulants of NMDA receptors alleviate extrapyramidal motor disorders by activating the nigrostriatal dopaminergic pathway. International Journal of Molecular Sciences, 18, 2–12.
Silver, R. A., Traynelis, S. F., & Cull-Candy, S. G. (1992). Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature, 355, 163–166.
Soden, M. E., Jones, G. L., Sanford, C. A., Chung, A. S., Güler, A. D., Chavkin, C., … Zweifel, L. S. (2013). Disruption of dopamine neuron activity pattern regulation through selective expression of a human KCNN3 mutation. Neuron, 80, 997–1009.
Stevens, E. R., Esguerra, M., Kim, P. M., Newman, E. A., Snyder, S. H., Zahs, K. R., & Miller, R. F. (2003). D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proceedings of the National Academy of Sciences of the United States of America, 100, 6789–6794.
Stevens, E. R., Gustafson, E. C., & Miller, R. F. (2010). Glycine transport accounts for the differential role of glycine vs. D-serine at NMDA receptor coagonist sites in the salamander retina. European Journal of Neuroscience, 31, 808–816.
Tepper, J. M., Damlama, M., & Trent, F. (1994). Postnatal changes in the distribution and morphology of rat substantia nigra dopaminergic neurons. Neuroscience, 60, 469–477.
Thomson, A. M., Walker, V. E., & Flynn, D. M. (1989). Glycine enhances NMDA-receptor mediated synaptic potentials in neocortical slices. Nature, 338, 422–424.
Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. K., … Dingledine, R. (2010). Glutamate receptor review. Glutamate Receptor Ion Channels: Structure, Regulation, and Function, 62, 405–496.
Wang, H.-X., & Gao, W.-J. (2010). Development of calcium-permeable AMPA receptors and their correlation with NMDA receptors in fast-spiking interneurons of rat prefrontal cortex. Journal of Physiology, 588, 2823–2838.
Wang, L. P., Li, F., Wang, D., Xie, K., Wang, D., Shen, X., & Tsien, J. Z. (2011). NMDA receptors in dopaminergic neurons are crucial for habit learning. Neuron, 72, 1055–1066.
Waroux, O., Massotte, L., Alleva, L., Graulich, A., Thomas, E., Liégeois, J. F., … Seutin, V. (2005). SK channels control the firing pattern of midbrain dopaminergic neurons in vivo. European Journal of Neuroscience, 22, 3111–3121.
Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A., & Uchida, N. (2012). Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron, 74, 858–873.
Wilcox, K. S., Fitzsimonds, R. M., Johnson, B., & Dichter, M. A. (1996). Glycine regulation of synaptic NMDA receptors in hippocampal neurons. Journal of Neurophysiology, 76, 3415–3424.
Wolosker, H., Balu, D. T., & Coyle, J. T. (2017). Astroglial versus neuronal D-serine: Check your controls!. Trends in Neurosciences, 40,520–522.
Wu, Y.-W., Grebenyuk, S., McHugh, T. J., Rusakov, D. A., & Semyanov, A. (2012). Backpropagating action potentials enable detection of extrasynaptic glutamate by NMDA receptors. Cell Reports, 1, 495–505.
Zafra, F., Aragón, C., Olivares, L., Danbolt, N. C., Giménez, C., & Storm-Mathisen, J. (1995). Glycine transporters are differentially expressed among CNS cells. Journal of Neuroscience, 15, 3952–3969.
Zweifel, L. S., Parker, J. G., Lobb, C. J., Rainwater, A., Wall, V. Z., Fadok, J. P., … Palmiter, R. D. (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proceedings of the National Academy of Sciences of the United States of America, 106, 7281–7288.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.