Papakostas, K., Mavromatis, T., Kyriakis, N., Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece. Renewable Energy 35 (2010), 1376–1379, 10.1016/j.renene.2009.11.012.
de Bruin, K., Dellink, R.B., Ruijs, A., Bolwidt, L., van Buuren, A., Graveland, J., et al. Adapting to climate change in The Netherlands: an inventory of climate adaptation options and ranking of alternatives. Clim Change 95 (2009), 23–45, 10.1007/s10584-009-9576-4.
Dewulf, A., Contrasting frames in policy debates on climate change adaptation: Contrasting frames on climate change adaptation. Wiley Interdiscip Rev Clim Change 4 (2013), 321–330, 10.1002/wcc.227.
Vijaya Venkata Raman, S., Iniyan, S., Goic, R., A review of climate change, mitigation and adaptation. Renew Sustain Energy Rev 16 (2012), 878–897, 10.1016/j.rser.2011.09.009.
Intergovernmental Panel on Climate Change, editor. Summary for Policymakers. Climate Change 2013 - The Physical Science Basis, Cambridge: Cambridge University Press; 2014, p. 1–30. doi:10.1017/CBO9781107415324.004.
European Commission. EU - 2030 climate & energy framework. Climate Action - European Commission; 2016. < https://ec.europa.eu/clima/policies/strategies/2030_en> (accessed January 29, 2019).
European Commission. EU - 2050 long-term strategy. Climate Action - European Commission; 2016. < https://ec.europa.eu/clima/policies/strategies/2050_en> (accessed January 29, 2019).
Pietrapertosa, F., Khokhlov, V., Salvia, M., Cosmi, C., Climate change adaptation policies and plans: a survey in 11 South East European countries. Renew Sustain Energy Rev 81 (2018), 3041–3050, 10.1016/j.rser.2017.06.116.
Energy Community Homepage n.d. < https://www.energy-community.org/> (accessed January 20, 2019).
Poncelet, K., Delarue, E., Six, D., Duerinck, J., D'haeseleer W. Impact of the level of temporal and operational detail in energy-system planning models. Appl Energy 162 (2016), 631–643, 10.1016/j.apenergy.2015.10.100.
Koltsaklis, N.E., Dagoumas, A.S., State-of-the-art generation expansion planning: a review. Appl Energy 230 (2018), 563–589, 10.1016/j.apenergy.2018.08.087.
Han, X., Chen, X., McElroy, M.B., Liao, S., Nielsen, C.P., Wen, J., Modeling formulation and validation for accelerated simulation and flexibility assessment on large scale power systems under higher renewable penetrations. Appl Energy 237 (2019), 145–154, 10.1016/j.apenergy.2018.12.047.
Hua, B., Baldick, R., Wang, J., Representing operational flexibility in generation expansion planning through convex relaxation of unit commitment. IEEE Trans Power Syst 33 (2018), 2272–2281, 10.1109/TPWRS.2017.2735026.
Pfenninger, S., Hawkes, A., Keirstead, J., Energy systems modeling for twenty-first century energy challenges. Renew Sustain Energy Rev 33 (2014), 74–86, 10.1016/j.rser.2014.02.003.
Heuberger, C.F., Rubin, E.S., Staffell, I., Shah, N., Mac Dowell, N., Power capacity expansion planning considering endogenous technology cost learning. Appl Energy 204 (2017), 831–845, 10.1016/j.apenergy.2017.07.075.
Min, D., Ryu, J., Choi, D.G., A long-term capacity expansion planning model for an electric power system integrating large-size renewable energy technologies. Comput Oper Res 96 (2018), 244–255, 10.1016/j.cor.2017.10.006.
Teichgraeber, H., Brandt, A.R., Clustering methods to find representative periods for the optimization of energy systems: an initial framework and comparison. Appl Energy 239 (2019), 1283–1293, 10.1016/j.apenergy.2019.02.012.
Koltsaklis, N.E., Georgiadis, M.C., A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints. Appl Energy 158 (2015), 310–331, 10.1016/j.apenergy.2015.08.054.
Pineda, S., Morales, J.M., Chronological time-period clustering for optimal capacity expansion planning with storage. IEEE Trans Power Syst 33 (2018), 7162–7170, 10.1109/TPWRS.2018.2842093.
Blanford, G.J., Merrick, J.H., Bistline, J.E.T., Young, D.T., Simulating Annual variation in load, wind, and solar by representative hour selection. Energy J, 39, 2018, 10.5547/01956574.39.3.gbla.
Slednev, V., Bertsch, V., Ruppert, M., Fichtner, W., Highly resolved optimal renewable allocation planning in power systems under consideration of dynamic grid topology. Comput Oper Res 96 (2018), 281–293, 10.1016/j.cor.2017.12.008.
González, I.H., Ruiz, P., Sgobbi, A., Nijs, W., Quoilin, S., Zucker, A., et al. Addressing flexibility in energy system models. Publ Off European Union, 80, 2015, 10.2790/925.
Quoilin S, Nijs W, Zucker A. Evaluating flexibility and adequacy in future EU power systems: Model coupling and long-term forecasting. Proceedings of the 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, San Diego; 2017.
Pietzcker, R.C., Ueckerdt, F., Carrara, S., de Boer, H.S., Després, J., Fujimori, S., et al. System integration of wind and solar power in integrated assessment models: a cross-model evaluation of new approaches. Energy Econ 64 (2017), 583–599, 10.1016/j.eneco.2016.11.018.
Pavičević M, Nijs W, Kavvadias KC, Quoilin S. Modelling flexible power demand and supply in the EU power system: soft-linking between JRC-EU-TIMES and the open-source Dispa-SET model. In: 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wrocław, Poland; 2019.
Bistline, J.E., Turn down for what? The economic value of operational flexibility in electricity markets. IEEE Trans Power Syst 34 (2019), 527–534, 10.1109/TPWRS.2018.2856887.
Palmintier, B.S., Webster, M.D., Impact of operational flexibility on electricity generation planning with renewable and carbon targets. IEEE Trans Sustainable Energy 7 (2016), 672–684, 10.1109/TSTE.2015.2498640.
Collins, S., Deane, J.P., Poncelet, K., Panos, E., Pietzcker, R.C., Delarue, E., et al. Integrating short term variations of the power system into integrated energy system models: a methodological review. Renew Sustain Energy Rev 76 (2017), 839–856, 10.1016/j.rser.2017.03.090.
Palmintier BS. Incorporating operational flexibility into electric generation planning : impacts and methods for system design and policy analysis. Thesis. Massachusetts Institute of Technology; 2013.
El Kafazi, I., Bannari, R., Hernánde, A.C.L., Optimization strategy considering Energy Storage Systems to minimize energy production cost of power systems. Int J Renewable Energy Res 8 (2018), 2199–2209.
Mehdinejad, M., Mohammadi-Ivatloo, B., Dadashzadeh-Bonab, R., Energy production cost minimization in a combined heat and power generation systems using cuckoo optimization algorithm. Energ Effi 10 (2017), 81–96, 10.1007/s12053-016-9439-6.
Jiménez Navarro, J.P., Kavvadias, K.C., Quoilin, S., Zucker, A., The joint effect of centralised cogeneration plants and thermal storage on the efficiency and cost of the power system. Energy 149 (2018), 535–549, 10.1016/j.energy.2018.02.025.
Silvente, J., Papageorgiou, L.G., An MILP formulation for the optimal management of microgrids with task interruptions. Appl Energy 206 (2017), 1131–1146, 10.1016/j.apenergy.2017.08.147.
Farhat, I.A., El-Hawary, M.E., Optimization methods applied for solving the short-term hydrothermal coordination problem. Electr Power Syst Res 79 (2009), 1308–1320, 10.1016/j.epsr.2009.04.001.
Quoilin S, Nijs W, Gonzalez IH, Zucker A, Thiel C. Evaluation of simplified flexibility evaluation tools using a unit commitment model. In: Proceedings of the 12th International Conference on the European Energy Market (EEM), vol. 2015- August, Lisbon, Portugal: Institute of Electrical and Electronics Engineers; 2015. doi:10.1109/EEM.2015.7216757.
Zhou, B., Geng, G., Jiang, Q., Hydro-thermal-wind coordination in day-ahead unit commitment. IEEE Trans Power Syst 31 (2016), 4626–4637, 10.1109/TPWRS.2016.2530689.
He, J., Hu, Z., Liu, Y., Establishment and solution of the large-scale multi-objective hydro-thermal-wind power coordination optimization dispatching model. Dianli Xitong Baohu Yu Kongzhi/Power Syst Protect Control 43 (2015), 1–7.
Nakamura, M., Kumarawadu, P., Yoshida, A., Hatazaki, H., Reliable Maintenance scheduling of pumps in existing thermal power stations. IFAC Proc Vol 30 (1997), 165–168, 10.1016/S1474-6670(17)42249-X.
Fernández-Blanco, R., Kavvadias, K., Hidalgo González, I., Quantifying the water-power linkage on hydrothermal power systems: a Greek case study. Appl Energy 203 (2017), 240–253, 10.1016/j.apenergy.2017.06.013.
Pandzic H, Qiu T, Kirschen DS. Comparison of state-of-the-art transmission constrained unit commitment formulations; 2013. doi:10.1109/PESMG.2013.6672719.
Gentile, C., Morales-España, G., Ramos, A., A tight MIP formulation of the unit commitment problem with start-up and shut-down constraints. EURO J Comput Optimiz 5 (2017), 177–201, 10.1007/s13675-016-0066-y.
Morales-España, G., Ramírez-Elizondo, L., Hobbs, B.F., Hidden power system inflexibilities imposed by traditional unit commitment formulations. Appl Energy 191 (2017), 223–238, 10.1016/j.apenergy.2017.01.089.
Yang, L., Zhang, C., Jian, J., Meng, K., Xu, Y., Dong, Z., A novel projected two-binary-variable formulation for unit commitment in power systems. Appl Energy 187 (2017), 732–745, 10.1016/j.apenergy.2016.11.096.
Wang, W., Li, C., Liao, X., Qin, H., Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm. Appl Energy 187 (2017), 612–626, 10.1016/j.apenergy.2016.11.085.
Yang, Z., Li, K., Niu, Q., Xue, Y., A novel parallel-series hybrid meta-heuristic method for solving a hybrid unit commitment problem. Knowl-Based Syst 134 (2017), 13–30, 10.1016/j.knosys.2017.07.013.
Alvarez, G.E., Marcovecchio, M.G., Aguirre, P.A., Security-constrained unit commitment problem including thermal and pumped storage units: an MILP formulation by the application of linear approximations techniques. Electr Power Syst Res 154 (2018), 67–74, 10.1016/j.epsr.2017.07.027.
Alvarez, G.E., Marcovecchio, M.G., Aguirre, P.A., Unit commitment scheduling including transmission constraints: a MILP formulation. Comput Aided Chem Eng 38 (2016), 2157–2162, 10.1016/B978-0-444-63428-3.50364-7.
Hinojosa, V.H., Gutiérrez-Alcaraz, G., A computational comparison of 2 mathematical formulations to handle transmission network constraints in the unit commitment problem. Int Trans Electrical Energy Syst, 27, 2017, 10.1002/etep.2332.
Meus, J., Poncelet, K., Delarue, E., Applicability of a clustered unit commitment model in power system modeling. IEEE Trans Power Syst 33 (2018), 2195–2204, 10.1109/TPWRS.2017.2736441.
Palmintier, B.S., Webster, M.D., Heterogeneous unit clustering for efficient operational flexibility modeling. IEEE Trans Power Syst 29 (2014), 1089–1098, 10.1109/TPWRS.2013.2293127.
Palmintier B, Webster M. Impact of unit commitment constraints on generation expansion planning with renewables, 2011. doi:10.1109/PES.2011.6038963.
Pavičević M, Quoilin S. Dispa-SET Balkans - Dataset 2019. doi:10.5281/zenodo.2551747.
Open Energy Modelling Initiative (OPENMOD) - forum n.d. < https://forum.openmod-initiative.org/>.
Alemany, J., Kasprzyk, L., Magnago, F., Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets. Electr Power Syst Res 160 (2018), 429–438, 10.1016/j.epsr.2018.03.019.
Quoilin S. DispaSET Documentation n.d.:84.
Quoilin S, Kavvadias KC, Pavičević M. energy-modelling-toolkit: Dispa-SET github repository n.d. < https://github.com/energy-modelling-toolkit/Dispa-SET> (accessed April 24, 2019).
Welsch, M., European energy markets and society: findings informing the european commission. 1st ed., 2017, Elsevier, Cambridge, MA.
Myers L, Sirois MJ. Spearman Correlation Coefficients, Differences between. Encyclopedia of Statistical Sciences, American Cancer Society; 2006. doi:10.1002/0471667196.ess5050.pub2.
Pavičević, M., Quoilin, S., Zucker, A., Krajačić, G., Pukšec, T., Duić, N., Applying the Dispa-SET model on the western balkans power system. J Sustain Dev Energy, Water Environ Syst, 2019, 10.13044/j.sdewes.d7.0273 in press.
Szabó, L., Kelemen, Á., Mezősi, A., Pató, Z., Kácsor, E., Resch, G., et al. South East Europe electricity roadmap – modelling energy transition in the electricity sectors. Climate Policy, 2018, 1–16, 10.1080/14693062.2018.1532390.
Beltramo A, Julea A, Refa N, Drossinos Y, Thiel C, Quoilin S. Using electric vehicles as flexible resource in power systems: A case study in the Netherlands. Proceedings of the 14th International Conference on the European Energy Market, Dresden: Technische Universität Dresden; 2017.
Villavicencio M. A capacity expansion model dealing with balancing requirements, short.term operations and long-run dynamics. France: Chaire European Electricity Markets - CEEM; 2017.
Yasuda Y, Årdal AR, Hernando DH, Carlini EM, Estanqueiro A, Flynn D, et al. Evaluation on diversity of flexibility in various areas. In: Proceedings of the 12th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, London: 2013, p. 6.
ENTSOE. TYNDP - Europe's Network Development Plan to 2025, 2030 and 2040 n.d. < https://tyndp.entsoe.eu/> (accessed January 28, 2019).
Staffell, I., Pfenninger, S., Using bias-corrected reanalysis to simulate current and future wind power output. Energy 114 (2016), 1224–1239, 10.1016/j.energy.2016.08.068.
Pfenninger, S., Staffell, I., Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 114 (2016), 1251–1265, 10.1016/j.energy.2016.08.060.
Pfenninger, S., DeCarolis, J., Hirth, L., Quoilin, S., Staffell, I., The importance of open data and software: is energy research lagging behind?. Energy Policy 101 (2017), 211–215, 10.1016/j.enpol.2016.11.046.
Dispa-SET for the Balkans region — Documentation n.d. < http://www.dispaset.eu/en/latest/casebalkans.html> (accessed January 30, 2019).
Keatley, P., Shibli, A., Hewitt, N.J., Estimating power plant start costs in cyclic operation. Appl Energy 111 (2013), 550–557, 10.1016/j.apenergy.2013.05.033.