Poster (Scientific congresses and symposiums)
Objective and subjective comparison of several machine learning techniques applied to the real-time emulation of the guitar amplifier nonlinear behavior
Schmitz, Thomas; Embrechts, Jean-Jacques
2019146th International Pro-audio Convention of the Audio Engineering Society
 

Files


Full Text
TSchmitzAES2019_final.pdf
Publisher postprint (1.75 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Neural network; tube amplifiers; nonlinear emulation
Abstract :
[en] Recent progresses made in the nonlinear system identification field have improved the ability to emulate nonlinear audio systems such as the tube guitar amplifiers. In particular, machine learning techniques have enabled an accurate emulation of such devices. The next challenge lies in the ability to reduce the computation time of these models. The first purpose of this paper is to compare different neural-network architectures in terms of accuracy and computation time. The second purpose is to select the fastest model keeping the same perceived accuracy using a subjective evaluation of the model with a listening-test.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Schmitz, Thomas ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Dép. d'électric., électron. et informat. (Inst.Montefiore)
Embrechts, Jean-Jacques ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Techniques du son et de l'image
Language :
English
Title :
Objective and subjective comparison of several machine learning techniques applied to the real-time emulation of the guitar amplifier nonlinear behavior
Publication date :
20 March 2019
Event name :
146th International Pro-audio Convention of the Audio Engineering Society
Event organizer :
Audio Engineering Society
Event place :
Dublin, Ireland
Event date :
20-23 March 2019
Audience :
International
Available on ORBi :
since 11 June 2019

Statistics


Number of views
147 (6 by ULiège)
Number of downloads
3 (2 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
2

Bibliography


Similar publications



Contact ORBi