Article (Scientific journals)
Predicting anxiety from wholebrain activity patterns to emotional faces in young adults: a machine learning approach
Portugal, Liana; Schrouff, Jessica; Stiffler, R et al.
2019In NeuroImage: Clinical, 23
Peer Reviewed verified by ORBi
 

Files


Full Text
1-s2.0-S2213158219301639-main.pdf
Publisher postprint (1.03 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
RDoC; Anxiety; Depression; fMRI; Pattern recognition; Faces
Disciplines :
Psychiatry
Author, co-author :
Portugal, Liana
Schrouff, Jessica ;  University College London - UCL
Stiffler, R
Bertocci, M
Bebko, G
Chase, H
Lockovitch, J
Aslam, H
Graur, S
Greenberg, T
Pereira, M
Oliveira, L
Phillips, M
Mourao-Miranda, Janaina
More authors (4 more) Less
Language :
English
Title :
Predicting anxiety from wholebrain activity patterns to emotional faces in young adults: a machine learning approach
Publication date :
2019
Journal title :
NeuroImage: Clinical
eISSN :
2213-1582
Publisher :
Elsevier, Netherlands
Volume :
23
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 654038 - DecoMP_ECoG - Decoding memory processing from experimental and spontaneous human brain activity using intracranial electrophysiological recordings and machine learning based methods.
Funders :
CE - Commission Européenne
Available on ORBi :
since 05 June 2019

Statistics


Number of views
89 (1 by ULiège)
Number of downloads
85 (0 by ULiège)

Scopus citations®
 
26
Scopus citations®
without self-citations
23
OpenCitations
 
22
OpenAlex citations
 
35

Bibliography


Similar publications



Contact ORBi