[en] In recent years, sea ice cover along coasts of East Antarctica has tended to increase. To understand ecological implications of these environmental changes, we studied benthic food web structure on the coasts of Adélie Land during an event of unusually high sea ice cover (i.e. two successive austral summers without seasonal breakup). We used integrative trophic markers (stable isotope ratios of carbon, nitrogen and sulfur) to build ecological models and explored feeding habits of macroinvertebrates. In total, 28 taxa spanning most present animal groups and functional guilds were investigated. Our results indicate that the absence of seasonal sea ice breakup deeply influenced benthic food webs. Sympagic algae dominated the diet of many key consumers, and the trophic levels of invertebrates were low, suggesting omnivore consumers did not rely much on predation and/or scavenging. Our results provide insights about how Antarctic benthic consumers, which typically live in an extremely stable environment, might adapt their feeding habits in response to sudden changes in environmental conditions and trophic resource availability. They also show that local and/or global trends of sea ice increase in Antarctica have the potential to cause drastic changes in food web structure, and therefore to impact benthic communities.
Research center :
MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
vERSO - Ecosystem Responses to global change: a multiscale approach in the Southern Ocean (BR/132/A1/vERSO)
Funders :
BELSPO - Belgian Science Policy Office [BE] F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE] IPEV - Institut Polaire Français Paul Émile Victor [FR]
Barnes, D. K. A. & Peck, L. S. Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Clim. Res. 37, 149–163 (2008).
Portner, H. O., Peck, L. & Somero, G. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos. Trans. R. Soc. B Biol. Sci. 362, 2233–2258 (2007).
Parkinson, C. L. & Cavalieri, D. J. Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6, 871–880 (2012).
Turner, J. et al. Antarctic climate change during the last 50 years. Int. J. Climatol. 25, 279–294 (2005).
Massom, R. A. & Stammerjohn, S. E. Antarctic sea ice change and variability - Physical and ecological implications. Polar Sci. 4, 149–186 (2010).
King, J. A. Resolution of the Antarctic paradox. Nature 505, 491–492 (2014).
Turner, J., Harangozo, S. A., Marshall, G. J., King, J. C. & Colwell, S. R. Anomalous atmospheric circulation over the Weddell Sea, Antarctica during the Austral summer of 2001/02 resulting in extreme sea ice conditions. Geophys. Res. Lett. 29, 13-1–13–4 (2002).
Fraser, A. D., Massom, R. A., Michael, K. J., Galton-Fenzi, B. K. & Lieser, J. L. East antarctic landfast sea ice distribution and variability, 2000-08. J. Clim. 25, 1137–1156 (2012).
Fripiat, F., Sigman, D. M., Massé, G. & Tison, J. L. High turnover rates indicated by changes in the fixed N forms and their stable isotopes in Antarctic landfast sea ice. J. Geophys. Res. Ocean. 120, 3079–3097 (2015).
Massom, R. A. et al. Fast ice distribution in Adélie Land, East Antarctica: Interannual variability and implications for emperor penguins Aptenodytes forsteri. Mar. Ecol. Prog. Ser. 374, 243–257 (2009).
Barbraud, C. & Weimerskirch, H. Antarctic birds breed later in response to climate change. Proc. Natl. Acad. Sci. 103, 6248–6251 (2006).
Kusahara, K. et al. Modeling Ocean–Cryosphere Interactions off Adélie and George V Land, East Antarctica. J. Clim. 30, 163–188 (2017).
Clark, G. F., Marzinelli, E. M., Fogwill, C. J., Turney, C. S. M. & Johnston, E. L. Effects of sea-ice cover on marine benthic communities: a natural experiment in Commonwealth Bay, East Antarctica. Polar Biol. 38, 1213–1222 (2015).
Norkko, A. et al. Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88, 2810–2820 (2007).
Michel, L. N., David, B., Dubois, P., Lepoint, G. & De Ridder, C. Trophic plasticity of Antarctic echinoids under contrasted environmental conditions. Polar Biol. 39, 913–923 (2016).
Wing, S. R., McLeod, R. J., Leichter, J. J., Frew, R. D. & Lamare, M. D. Sea ice microbial production supports Ross Sea benthic communities: Influence of a small but stable subsidy. Ecology 93, 314–323 (2012).
Calizza, E., Careddu, G., Sporta Caputi, S., Rossi, L. & Costantini, M. L. Time- and depth-wise trophic niche shifts in Antarctic benthos. PLoS One 13, e0194796 (2018).
Elton, C. S. Animal Ecology, 10.1098/rstb.2010.0107 Animal ecology (MacMillan, 1927).
Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399 (2013).
Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS One 5, e9672 (2010).
Quezada-Romegialli, C. et al. tRophicPosition, an R package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods Ecol. Evol. 9, 1592–1599 (2018).
Knox, G. A. Primary Production and Consumption in McMurdo Sound, Antarctica. In Antarctic Ecosystems 115–128, 10.1007/978-3-642-84074-6_11 (Springer, 1990).
Riebesell, U., Schloss, I. & Smetacek, V. Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol. 11, 239–248 (1991).
McMahon, K. W. et al. Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard. Mar. Ecol. Prog. Ser. 310, 1–14 (2006).
Bruhn, A. et al. Crude fucoidan content in two North Atlantic kelp species, Saccharina latissima and Laminaria digitata—seasonal variation and impact of environmental factors. J. Appl. Phycol. 29, 3121–3137 (2017).
Duggins, D. O. & Eckman, J. E. Is kelp detritus a good food for suspension feeders? Effects of kelp species, age and secondary metabolites. Mar. Biol. 128, 489–495 (1997).
Dunton, K. H. δ15N and δ13C Measurements of Antarctic Peninsula Fauna: Trophic Relationships and Assimilation of Benthic Seaweeds. Am. Zool. 41, 99–112 (2001).
Corbisier, T. N., Petti, M. A. V., Skowronski, R. S. P. & Brito, T. A. S. Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol. 27, 75–82 (2004).
Pasotti, F. et al. Benthic trophic interactions in an Antarctic shallow water ecosystem affected by recent glacier retreat. PLoS One 10, e0141742 (2015).
Gillies, C. L., Stark, J. S., Johnstone, G. J. & Smith, S. D. A. Carbon flow and trophic structure of an Antarctic coastal benthic community as determined by δ13C and δ15N. Estuar. Coast. Shelf Sci. 97, 44–57 (2012).
Peck, L. S., Convey, P. & Barnes, D. K. A. Environmental constraints on life histories in Antarctic ecosystems: Tempos, timings and predictability. Biol. Rev. Camb. Philos. Soc. 81, 75–109 (2006).
Agüera, A., Collard, M., Jossart, Q., Moreau, C. & Danis, B. Parameter estimations of Dynamic Energy Budget (DEB) model over the life history of a key Antarctic species: The Antarctic sea star Odontaster validus Koehler, 1906. PLoS One 10, e0140078 (2015).
Agüera, A., Ahn, I.-Y., Guillaumot, C. & Danis, B. A Dynamic Energy Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism. PLoS One 12, e0183848 (2017).
Fry, B. Stable Isotope Ecology. (Springer, 2006).
Hairston, N. G. & Hairston, N. G. Cause-Effect Relationships in Energy Flow, Trophic Structure, and Interspecific Interactions. Am. Nat. 142, 379–411 (1993).
Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).
Vander Zanden, M. J. & Rasmussen, J. B. Primary consumers δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80, 1395–1404 (1999).
Smale, D. A., Barnes, D. K. A., Fraser, K. P. P., Mann, P. J. & Brown, M. P. Scavenging in Antarctica: Intense variation between sites and seasons in shallow benthic necrophagy. J. Exp. Mar. Bio. Ecol. 349, 405–417 (2007).
Calizza, E., Costantini, M. L., Rossi, D., Carlino, P. & Rossi, L. Effects of disturbance on an urban river food web. Freshw. Biol. 57, 2613–2628 (2012).
McMeans, B. C., McCann, K. S., Humphries, M., Rooney, N. & Fisk, A. T. Food Web Structure in Temporally-Forced Ecosystems. Trends Ecol. Evol. 30, 662–672 (2015).
Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. (Princeton University Press, 2002).
Webster, N. S. & Thomas, T. The Sponge Hologenome. MBio 7, 1–14 (2016).
Weisz, J. B., Lindquist, N. & Martens, C. S. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155, 367–376 (2008).
Iken, K., Brey, T., Wand, U., Voigt, J. & Junghans, P. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): A stable isotope analysis. Prog. Oceanogr. 50, 383–405 (2001).
Jansen, J. et al. Abundance and richness of key Antarctic seafloor fauna correlates with modelled food availability. Nat. Ecol. Evol. 2, 71–80 (2018).
Ortiz, M. et al. Quantifying keystone species complexes: Ecosystem-based conservation management in the King George Island (Antarctic Peninsula). Ecol. Indic. 81, 453–460 (2017).
Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an Integrated Framework for Assessing the Vulnerability of Species to Climate Change. PLoS Biol. 6, e325 (2008).
Barnes, D. K. A. & Conlan, K. E. Disturbance, colonization and development of Antarctic benthic communities. Philos. Trans. R. Soc. B Biol. Sci. 362, 11–38 (2007).
Brockington, S. & Peck, L. Seasonality of respiration and ammonium excretion in the Antarctic echinoid Sterechinus neumayeri. Mar. Ecol. Prog. Ser. 219, 159–168 (2001).
Brockington, S., Clarke, A. & Chapman, A. L. G. Seasonality of feeding and nutritional status during the austral winter in the Antarctic sea urchin Sterechinus neumayeri. Mar. Biol. 139, 127–138 (2001).
Pearse, J. S., McClintock, J. B. & Bosch, I. Reproduction of Antarctic Benthic Marine Invertebrates: Tempos, Modes, and Timing. Am. Zool. 31, 65–80 (1991).
Stanwell-Smith, D. & Barnes, D. K. Benthic community development in Antarctica: recruitment and growth on settlement panels at Signy Island. J. Exp. Mar. Bio. Ecol. 212, 61–79 (1997).
Mateo, M. A., Serrano, O., Serrano, L. & Michener, R. H. Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes. Oecologia 157, 105–115 (2008).
Jaschinski, S., Hansen, T. & Sommer, U. Effects of acidification in multiple stable isotope analyses. Limnol. Oceanogr. Methods 6, 12–15 (2008).
Hedges, J. I. & Stern, J. H. Carbon and nitrogen determinations of carbonate-containing solids. Limnol. Oceanogr. 29, 657–663 (1984).
Connolly, R. M. & Schlacher, T. A. Sample acidification significantly alters stable isotope ratios of sulfur in aquatic plants and animals. Mar. Ecol. Prog. Ser. 493, 1–8 (2013).
Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).
McCutchan, J. H. J., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).
R Core Team, N. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2016).
Cabana, G. & Rasmussen, J. B. Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372, 255–257 (1994).