Liu, Y.; Fairy Lake Botanical Garden & Chinese Academy of Sciences, Shenzhen, 518004, China, BGI-Shenzhen, Shenzhen, 518120, China
Johnson, M. G.; Texas Tech University, Lubbock, TX 79409, United States
Cox, C. J.; Centro de Ciências do Mar, Universidade do Algarve, Gambelas, Faro, 8005-319, Portugal
Medina, R.; Department of Biology, Augustana College, Rock Island, IL 61201, United States
Devos, N.; Department of Biology, Duke University, Durham, NC 27708, United States
Vanderpoorten, Alain ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - aCREA-Ulg
Hedenäs, L.; Department of Botany, Swedish Museum of Natural History, Stockholm, Box 50007, 10405, Sweden
Bell, N. E.; Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, United Kingdom
Shevock, J. R.; California Academy of Sciences, San Francisco, CA 94118, United States
Aguero, B.; Department of Biology, Duke University, Durham, NC 27708, United States
Quandt, D.; Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, 53115, Germany
Wickett, N. J.; Chicago Botanic Garden, Glencoe, IL 60022, United States
Shaw, A. J.; Department of Biology, Duke University, Durham, NC 27708, United States
Goffinet, B.; Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, United States
Clarke, J. T., Warnock, R. & Donoghue, P. C. Establishing a time-scale for plant evolution. New Phytol. 192, 266–301 (2011).
Laenen, B. et al. Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nat. Commun. 5, 6134 (2014).
Cardona-Correa, C. et al. Peat moss–like vegetative remains from ordovician carbonates. Int. J. Plant Sci. 177, 523–538 (2016).
Goffinet, B. & Buck, W. R. The evolution of body form in bryophytes. Annu. Plant Rev. 45, 51–89 (2013).
La Farge-England, C. Growth form, branching pattern, and perichaetial position in mosses: cladocarpy and pleurocarpy redefined. Bryologist 99, 170–186 (1996).
Goffinet, B., Buck, W. R. & Shaw A. J. in Bryophyte Biology, 2nd edn. (eds Goffinet, B. & Shaw, A. J.) (Cambridge University Press, New York, NY USA, 2009).
Proctor, M. C. The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecol. 151, 41–49 (2000).
Deane-Coe, K. K. & Stanton, D. Functional ecology of cryptogams: scaling from bryophyte, lichen, and soil crust traits to ecosystem processes. New Phytol. 213, 993–995 (2017).
Yu, Z. Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9, 4071–4085 (2012).
Shaw, A. J. et al. Peatmoss (Sphagnum) diversification associated with Miocene Northern Hemisphere climatic cooling? Mol. Phylogen. Evol. 55, 1139–1145 (2010).
Johnson, M. G. et al. HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Appl. Plant Sci. 4, 1600016 (2016).
Newton, A. E. et al. Evolution of the major moss lineages: phylogenetic analyses based on multiple gene sequences and morphology. Bryologist 103, 187–211 (2000).
Cox, C. J., Goffinet, B., Shaw, A. J. & Boles, S. B. Phylogenetic relationships among the mosses based on heterogeneous Bayesian analysis of multiple genes from multiple genomic compartments. Syst. Bot. 29, 234–250 (2004).
Qiu, Y. -L. et al. The deepest divergences in land plants inferred from phylogenomic evidence. Proc. Natl Acad. Sci. USA 103, 15511–15516 (2006).
Chang, Y. & Graham, S. W. Inferring the higher-order phylogeny of mosses (Bryophyta) and relatives using a large, multigene plastid data set. Am. J. Bot. 98, 839–849 (2011).
Chang, Y. & Graham, S. W. Patterns of clade support across the major lineages of moss phylogeny. Cladistics 30, 590–606 (2014).
Vitt, D. H. in New Manual of Bryology (eds Schuster, R. M.). 696–759 (Hattori Botanical Laboratory, Nichinan, Japan 1984).
Stech, M. & Frey, W. A morpho-molecular classification of the mosses (Bryophyta). Nova Hedwig. 86, 1–21 (2008).
Bell, N. E. & Hyvönen, J. in Bryology in the New Millennium (eds Mohamed, H., Baki, B. B., Nasrulhaq-Boyce, A. & Lee, P. K. Y.) 227–239 (University of Malaya, Kuala Lumpur, Malaysia 2008).
Hyvönen, J., Hedderson, T. A., Merrill, G. L. S., Gibbings, J. G. & Koskinen, S. On phylogeny of the Polytrichales. Bryologist 101, 489–504 (1998).
Cox, C. J., Goffinet, B., Wickett, N. J., Boles, S. B. & Shaw, A. J. Moss diversity: a molecular phylogenetic analysis of genera. Phytotaxa 9, 175–195 (2010).
Wahrmund, U., Quandt, D. & Knoop, V. The phylogeny of mosses–Addressing open issues with a new mitochondrial locus: Group I intron cobi420. Mol. Phylogen. Evol. 54, 417–426 (2010).
Shaw, A. J., Cox, C. J., Goffinet, B., Buck, W. R. & Boles, S. B. Phylogenetic evidence of a rapid radiation of pleurocarpous mosses (Bryophyta). Evolution 57, 2226–2241 (2003).
Bell, N. & Newton, A. in Molecular systematics of bryophytes. Monographs in Systematic Botany (eds Goffinet, B., Hollowell, V. & Magill, R.) 290–319 (Missouri Botanical Garden Press, St. Louis, USA 2004).
Buck, W. R., Cox, C. J., Shaw, A. J. & Goffinet, B. Ordinal relationships of pleurocarpous mosses, with special emphasis on the Hookeriales. Syst. Biodivers. 2, 121–145 (2004).
Whitfield, J. B. & Lockhart, P. J. Deciphering ancient rapid radiations. Trends Ecol. Evol. 22, 258–265 (2007).
Léveillé-Bourret, É., Starr, J. R., Ford, B. A., Lemmon, E. M. & Lemmon, A. R. Resolving rapid radiations within angiosperm families using anchored phylogenomics. Syst. Biol. 67, 94–112 (2017).
Wei, R. et al. Plastid phylogenomics resolve deep relationships among eupolypod II ferns with rapid radiation and rate heterogeneity. Genome Biol. Evol. 9, 1646 (2017).
Palmer, J. D. in The Molecular Biology of Plastids (eds Bogorad, L. & Vasil, I. K.) 5–53 (Academic Press, San Diego, USA 1991).
Drouin, G., Daoud, H. & Xia, J. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol. Phylogen. Evol. 49, 827–831 (2008).
Liu, Y., Cox, C. J., Wang, W. & Goffinet, B. Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias. Syst. Biol. 63, 862–878 (2014).
Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl Acad. Sci. USA 111, E4859–E4868 (2014).
Bakker, F. T. Herbarium genomics: skimming and plastomics from archival specimens. Webbia 72, 35–45 (2017).
Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).
Pyron, R. A., Hsieh, F. W., Lemmon, A. R., Lemmon, E. M. & Hendry, C. R. Integrating phylogenomic and morphological data to assess candidate species-delimitation models in brown and red-bellied snakes (Storeria). Zool. J. Linn. Soc. 177, 937–949 (2016).
Cox, C. J., Li, B., Foster, P. G., Embley, T. M. & Civáň, P. Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutions. Syst. Biol. 63, 272–279 (2014).
Heath, T. A., Zwickl, D. J., Kim, J. & Hillis, D. M. Taxon sampling affects inferences of macroevolutionary processes from phylogenetic trees. Syst. Biol. 57, 160–166 (2008).
Hedtke, S. M., Townsend, T. M. & Hillis, D. M. Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst. Biol. 55, 522–529 (2006).
Huttunen, S. et al. Disentangling knots of rapid evolution: origin and diversification of the moss order Hypnales. J. Bryol. 34, 187–211 (2012).
Smith, S. A. et al. Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480, 364–367 (2011).
Parks, M. B., Wickett, N. J. & Alverson, A. J. Signal, uncertainty, and conflict in phylogenomic data for a diverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). Mol. Biol. Evol. 35, 80–93 (2017).
Timme, R. E., Bachvaroff, T. R. & Delwiche, C. F. Broad phylogenomic sampling and the sister lineage of land plants. PLoS ONE 7, e29696 (2012).
Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
Copetti, D. et al. Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti. Proc. Natl Acad. Sci. USA 114, 12003–12008 (2017).
Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).
Mandel, J. R. et al. A target enrichment method for gathering phylogenetic information from hundreds of loci: an example from the Compositae. Appl. Plant Sci. 2, 1300085 (2014).
Morales-Briones, D. F., Liston, A. & Tank, D. C. Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae). New Phytol. 218, 1668–1684 (2018).
Weitemier, K. et al. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics. Appl. Plant Sci. 2, 1400042 (2014).
Bogarín, D. et al. Anchored hybrid enrichment generated nuclear, plastid and mitochondrial markers resolve the Lepanthes horrida (Orchidaceae: Pleurothallidinae) species complex. Mol. Phylogen. Evol. 129, 27–47 (2018).
Heyduk, K., Trapnell, D. W., Barrett, C. F. & Leebens-Mack, J. Phylogenomic analyses of species relationships in the genus Sabal (Arecaceae) using targeted sequence capture. Biol. J. Linn. Soc. 117, 106–120 (2015).
Matasci, N. et al. Data access for the 1,000 Plants (1KP) project. Gigascience 3, 17 (2014).
Wiens, J. J. & Morrill, M. C. Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst. Biol. 60, 719–731 (2011).
Jiang, W., Chen, S. -Y., Wang, H., Li, D. -Z. & Wiens, J. J. Should genes with missing data be excluded from phylogenetic analyses? Mol. Phylogen. Evol. 80, 308–318 (2014).
Wicke, S., Schneeweiss, G. M., Müller, K. F. & Quandt, D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol. Biol. 76, 273–297 (2011).
Stenøien, H. Slow molecular evolution in 18S rDNA, rbcL and nad5 genes of mosses compared with higher plants. J. Evol. Biol. 21, 566–571 (2008).
Szövényi, P. et al. Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss. Mol. Phylogen. Evol. 30, 1929–1939 (2013).
Mirarab, S. & Warnow, T. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31, i44–i52 (2015).
Volkmar, U. & Knoop, V. Introducing intron locus cox1i624 for phylogenetic analyses in bryophytes: on the issue of Takakia as sister genus to all other extant mosses. J. Mol. Evol. 70, 506–518 (2010).
Smith, S. A., Moore, M. J., Brown, J. W. & Yang, Y. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 15, 150 (2015).
Shaw, A. J. in Bryophyte Biology, 2nd edn. (eds Goffinet, B. & Shaw, A. J.) 445–485 (Cambridge University Press, New York, NY USA, 2009).
Natcheva, R. & Cronberg, N. Maternal transmission of cytoplasmic DNA in interspecific hybrids of peat mosses, Sphagnum (Bryophyta). J. Evol. Biol. 20, 1613–1616 (2007).
Greiner, S., Sobanski, J. & Bock, R. Why are most organelle genomes transmitted maternally? Bioessays 37, 80–94 (2015).
Bowe, L. M. & dePamphilis, C. W. Effects of RNA editing and gene processing on phylogenetic reconstruction. Mol. Biol. Evol. 13, 1159–1166 (1996).
Yura, K., Miyata, Y., Arikawa, T., Higuchi, M. & Sugita, M. Characteristics and prediction of RNA editing sites in transcripts of the moss Takakia lepidozioides chloroplast. DNA Res. 15, 309–321 (2008).
Miyata, Y. & Sugita, M. Tissue-and stage-specific RNA editing of rps14 transcripts in moss (Physcomitrella patens) chloroplasts. J. Plant Physiol. 161, 113–115 (2004).
Murray, B. M. Systematics of the Andreaeopsida (Bryophyta): Two orders with links to Takakia. Beih. Zur. Nova Hedwig. 90, 289–336 (1988).
Hyvönen, J., Koskinen, S., Merrill, G. L., Hedderson, T. A. & Stenroos, S. Phylogeny of the Polytrichales (Bryophyta) based on simultaneous analysis of molecular and morphological data. Mol. Phylogen. Evol. 31, 915–928 (2004).
Bell, N. E. & Hyvönen, J. Phylogeny of the moss class Polytrichopsida (Bryophyta): generic-level structure and incongruent gene trees. Mol. Phylogen. Evol. 55, 381–398 (2010).
Shimamura M. & Deguchi H. in Bryology in the New Millennium. (eds Mohamed, H., Baki, B. B., Nasrulhaq-Boyce, A. & Lee, P. K. Y.) 319–325 (University of Malaya, Kuala Lumpur, Malaysia 2008).
Ignatov, M. S., Spirina, U. N., Maslova, E. V., Ivanov, O. V. & Ignatova, E. A. On the leaf development in Oedipodium (Oedipodiales, Bryophyta). Arctoa 24, 431–451 (2015).
Ligrone, R. & Duckett, J. G. Morphology versus molecules in moss phylogeny: new insights (or controversies) from placental and vascular anatomy in Oedipodium griffithianum. Plant Syst. Evol. 296, 275–282 (2011).
Goffinet, B. et al. Distribution and phylogenetic significance of the 71-kb inversion in the plastid genome in Funariidae (Bryophyta). Ann. Bot. 99, 747–753 (2007).
Fedosov, V. E., Fedorova, A. V., Fedosov, A. E. & Ignatov, M. S. Phylogenetic inference and peristome evolution in haplolepideous mosses, focusing on Pseudoditrichaceae and Ditrichaceae sl. Bot. J. Linn. Soc. 181, 139–155 (2016).
Bell, N. E., Quandt, D., O’Brien, T. J. & Newton, A. E. Taxonomy and phylogeny in the earliest diverging pleurocarps: square holes and bifurcating pegs. Bryologist 110, 533–560 (2007).
Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340 (2009).
McKain, M. R., Johnson, M. G., Uribe-Convers, S., Eaton, D. & Yang, Y. Practical considerations for plant phylogenomics. Appl. Plant Sci. 6, e1038 (2018).
Espeland, M. et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770–778 (2018).
Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).
Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
Newton, M. A. & Raftery, A. E. Approximate Bayesian inference with the weighted likelihood bootstrap. J. R. Stat. Soc. Ser. B. 56, 3–48 (1994).
Cox, C. J. & Foster, P. G. A 20-state empirical amino-acid substitution model for green plant chloroplasts. Mol. Phylogen. Evol. 68, 218–220 (2013).
Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Phylogen. Evol. 21, 1095–1109 (2004).
Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).
Sayyari, E. & Mirarab, S. Fast coalescent-based computation of local branch support from quartet frequencies. Mol. Phylogen. Evol. 33, 1654–1668 (2016).
Walker, J. F. et al. Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the carnivorous Caryophyllales. Am. J. Bot. 104, 858–867 (2017).