Morton, S. E.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Dickson, J.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Chase, J. G.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Docherty, P.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Desaive, Thomas ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Howe, S. L.; Department of Mechanical Engineering, University of Canterbury, New Zealand
Shaw, G. M.; Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
Tawhai, M.; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
Language :
English
Title :
A virtual patient model for mechanical ventilation
Publication date :
2018
Journal title :
Computer Methods and Programs in Biomedicine
ISSN :
0169-2607
eISSN :
1872-7565
Publisher :
Elsevier Ireland Ltd
Volume :
165
Pages :
77-87
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
TEC fund MedTech CoRE (Centre of Research Expertise); NZ National Science Challenge 7, Science for Technology and Innovation; eTIME 318943; EU FP7 International Research StaffEx- change Scheme (IRSES) grant [#PIRSES-GA-2012-318943]
Funders :
TEC - Tertiary Education Commission UE - Union Européenne
Sundaresan, A., Yuta, T., Hann, C.E., Chase, J.G., Shaw, G.M., A minimal model of lung mechanics and model-based markers for optimizing ventilator treatment in ARDS patients. Comput. Methods Progr. Biomed. 95:2 (2009), 166–180.
Lorx, A., et al. Airway and tissue mechanics in ventilated patients with pneumonia. Respir. Physiol. Neurobiol. 171:2 (2010), 101–109.
Terragni, P.P., Rosboch, G.L., Lisi, A., Viale, A.G., Ranieri, V.M., How respiratory system mechanics may help in minimising ventilator-induced lung injury in ARDS patients. Eur. Respir. J. 22:42 (2003), 15–21.
Simonis, F.D., et al. PReVENT - protective ventilation in patients without ARDS at start of ventilation: study protocol for a randomized controlled trial. Trials, 16(1), 2015, 226.
Slutsky, A., Ranieri, V.M., Ventilator-Induced Lung Injury. N. Engl. J. Med., 370, 2014, 980.
Pinhu, L., Whitehead, T., Evans, T.W., Griffiths, M., Ventilator-associated lung injury. Lancet, 6736, 2003 no. January 2014.
Van der Kloot, T.E., et al. Recruitment Maneuvers in Three Experimental Models of Acute Lung Injury Effect on Lung Volume and Gas Exchange. Am. J. Respir. Crit. Care Med 161 (2000), 1485–1494.
Garcia, C.S.N.B., Prota, L.F.M., Morales, M.M., Romero, P.V., a. Zin, W., Rocco, P.R.M., Understanding the mechanisms of lung mechanical stress. Braz. J. Med. Biol. Res. 39:6 (2006), 697–706.
Bates, J.H.T., Irvin, C.G., Time dependence of recruitment and derecruitment in the lung: a theoretical model. J. Appl. Physiol. 93:2 (2002), 705–713.
Valentini, R., Aquino-Esperanza, J., Bonelli, I., Maskin, P., Gas exchange and lung mechanics in patients with acute respiratory distress syndrome: comparison of three different strategies of positive end expiratory pressure. J. Crit. Care 30:2 (2014), 334–340.
Mercat, A., et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome. JAMA, 299(6), 2008, 646.
Lambermont, B., et al. Comparison of functional residual capacity and static compliance of the respiratory system during a positive end-expiratory pressure (PEEP) ramp procedure in an experimental model of acute respiratory distress syndrome. Crit. Care, 12(4), 2008, R91.
Rocco, P.R.M., Pelosi, P., de Abreu, M.G., Pros and cons of recruitment maneuvers in acute lung injury and acute respiratory distress syndrome. Expert Rev. Respir. Med. 4:4 (2010), 479–489.
Slutsky, A.S., Hudson, L.D., PEEP or no PEEP–lung recruitment may be the solution. N. Engl. J. Med. 354:17 (2006), 1839–1841.
Amato, M., Barbas, C., Medeiros, D., Magaldi, R., Schettino, G., Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N. Engl. J. Med. 338:6 (1998), 347–354.
Al Brower, R.E., Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342:18 (2000), 1301–1308.
Halter, J.M., et al. Positive end-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment. Am. J. Respir. Crit. Care Med. 167:12 (2003), 1620–1626.
Nieman, G., Paskanik, A., Bredenberg, C., Effect of positive end-expiratory pressure on alveolar capillary perfusion. J. Thorac. Cardiovasc. Surg. 95:4 (1988), 712–716.
Rachmale, S., Li, G., Wilson, G., Malinchoc, M., Gajic, O., Practice of excessive FiO2 and effect on pulmonary outcomes in mechanically ventilated patients with acute lung injury. Respir. Care 57:11 (2012), 1887–1893.
Chu, D., et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet 391:10131 (2018), 1693–1705.
Aboab, J., Louis, B., Jonson, B., Brochard, L., Relation between PaO2/FIO2 ratio and FIO2: a mathematical description. Appl. Physiol. Intensiv. Care Med. (Second Ed.), pp., 2009, 57–60.
O'Brien, J., Absorption atelectasis: incidence and clinical implications. AANA J. 81:3 (2013), 205–208.
Terragni, P.P., et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 175:2 (2007), 160–166.
Schirrmann, K., Mertens, M., Kertzscher, U., Kuebler, W.M., Affeld, K., Theoretical modeling of the interaction between alveoli during inflation and deflation in normal and diseased lungs. J. Biomech. 43:6 (2010), 1202–1207.
Chiew, Y.S., et al. Feasibility of titrating PEEP to minimum elastance for mechanically ventilated patients. Pilot Feasibility Stud 1:1 (2015), 1–10.
Suarez-Sipmann, F., et al. Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit. Care Med. 35:1 (2007), 214–221.
Carvalho, A.R.S., et al. Positive end-expiratory pressure at minimal respiratory elastance represents the best compromise between mechanical stress and lung aeration in oleic acid induced lung injury. Crit. Care, 11(4), 2007, R86.
Hodgson, C.L., et al. A randomised controlled trial of an open lung strategy with staircase recruitment, titrated PEEP and targeted low airway pressures in patients with acute respiratory distress syndrome. Crit. Care, 15(3), 2011, R133.
Suter, P.M., Fairley, H.B., Isenberg, M.D., Effect of tidal volume and positive end expiratory pressure on compliance during mechanical ventilation. Chest 73:2 (1978), 158–162.
van Drunen, E.J., et al. Visualisation of time-varying respiratory system elastance in experimental ARDS animal models. BMC Pulm. Med., 14(1), 2014, 33.
Stahl, C., et al. Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome. Crit. Care Med. 34:8 (2006), 2090–2098.
Richard, J.C., Maggiore, S.M., Jonson, B., Mancebo, J., Lemaire, F., Brochard, L., Influence of tidal volume on alveolar recruitment: respective role of PEEP and a recruitment maneuver. Am. J. Respir. Crit. Care Med. 163:7 (2001), 1609–1613.
Cavalcanti, A.B., et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome. JAMA, 318(14), 2017, 1335.
Langdon, R., Docherty, P.D., Chiew, Y.S., Chase, J.G., Extrapolation of a non-linear autoregressive model of pulmonary mechanics. Math. Biosci. 284 (2016), 32–39.
Chase, J.G., Desaive, T., Preiser, J.-C., Virtual patients and virtual cohorts: a new way to think about the design and implementation of personalised ICU treatments. Vincent, J.-L., (eds.) Annual Update in Intensive Care and Emergency Medicine 2016, 2, 2016, Springer, 435–448.
Chase, J.G., Le Compte, A.J., Preiser, J.-C., Shaw, G.M., Penning, S., Desaive, T., Physiological modeling, tight glycemic control, and the ICU clinician: what are models and how can they affect practice?. Ann. Intensiv. Care, 1(1), 2011, 11.
Langdon, R., Docherty, P.D., Chiew, Y.-S., Möller, K., Chase, J.G., Use of basis functions within a non-linear autoregressive model of pulmonary mechanics. Biomed. Signal Process. Control 27 (2016), 44–50.
Bates, J.H.T., Lung Mechanics: An Inverse Modeling Approach. 2009, Cambridge University Press.
Chelucci, G.L., et al. A single-compartment model cannot describe passive expiration in intubated, paralysed humans. Eur. Respir. J. 4 (1991), 458–464.
Szlavecz, A., et al. The clinical utilisation of respiratory elastance software (CURE Soft): a bedside software for real-time respiratory mechanics monitoring and mechanical ventilation management. Biomed. Eng. Online, 13(1), 2014, 140.
The ARDS Definition Task Force*. Acute Respiratory Distress syndrome : the Berlin definition. JAMA J. Am. Med. Assoc. 307:23 (2012), 2526–2533.
Davidson, S.M., et al. Clinical utilisation of respiratory elastance (CURE): pilot trials for the optimisation of mechanical ventilation settings for the critically Ill. IFAC Proc. Vol. 19 (2014), 8403–8408 no. October.
Gattinoni, L., Carlesso, E., Cadringher, P., Valenza, F., Vagginelli, F., Chiumello, D., Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur. Respir. J. 22:Suppl. 47 (2003), 15s–25s.
Bayliss, L.E., Robertson, G.., The visco-elastic properties of the lungs. Exp. Physiol. 29:1 (1938), 27–47.
Flevari, A.G., et al. Rohrer's constant, K2, as a factor of determining inspiratory resistance of common adult endotracheal tubes. Anaesth. Intensive Care 39:3 (2011), 410–417.
Rohrer, F., Physiologie der Atembewegung. Handbuch der normalen und pathologischen Physiologie, 2, 1925, Springer-Verlag, Berlin, 70–127, 10.1007/978-3-642-91002-9_3.
Jarreau, P.H., et al. Estimation of inspiratory pressure drop in neonatal and pediatric endotracheal tubes. J. Appl. Physiol. 87:1 (1999), 36–46.
Hager, D.N., a. Krishnan, J., Hayden, D.L., Brower, R.G., Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am. J. Respir. Crit. Care Med. 172:10 (2005), 1241–1245.
Ranieri, V.M., et al. Pressure-time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93:5 (2000), 1320–1328.
Dreyfuss, D., Saumon, G., Ventilator-induced lung injury: lessons from experimental studies. Am. J. Respir. Crit. Care Med. 157 (1998), 294–323.
Walkey, A.J., et al. Higher PEEP versus lower PEEP strategies for patients with acute respiratory distress syndrome. a systematic review and meta-analysis. Ann. Am. Thorac. Soc. 14:Suppl. 4 (2017), S297–S303.
Heizmann, S., Baumgärtner, M., Zhao, Z., Möller, K., 3-D lung visualization using electrical impedance tomography combined with body plethysmography. Proceedings of the Fifteenth International Conference on Biomedical Engineering, 43, 2014, 172–173.
Karsten, J., et al. Electrical impedance tomography may optimize ventilation in a postpartum woman with respiratory failure. Int. J. Obstet. Anesth. 22:1 (2013), 67–71.
Zhao, Z., Fischer, R., Frerichs, I., Müller-Lisse, U., Möller, K., Regional ventilation in cystic fibrosis measured by electrical impedance tomography. J. Cyst. Fibros. 11:5 (2012), 412–418.
Balleza-Ordaz, M., Perez-Alday, E., Vargas-Luna, M., Riu, J.P., Tidal volume monitoring by electrical impedance tomography (EIT) using different regions of interest (ROI): Calibration equations. Biomed. Signal Process. Control 18 (2015), 102–109.
van Drunen, E.J., Chase, J.G., Chiew, Y.S., Shaw, G.M., Desaive, T., Analysis of different model-based approaches for estimating dFRC for real-time application. Biomed. Eng. Online, 12(1), 2013, 9.
Dellamonica, J., et al. PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment. Intensiv. Care Med. 37:10 (2011), 1595–1604.
Wallet, F., et al. Evaluation of recruited lung volume at inspiratory plateau pressure with PEEP using bedside digital chest X-ray in patients with acute lung injury/ARDS. Respir. Care 58:3 (2013), 416–423.
Chase, J.G., et al. Validation of a model-based virtual trials method for tight glycemic control in intensive care. Biomed. Eng. Online, 9(1), 2010, 84.
Chase, J., et al. Next-generation, personalised, model-based critical care medicine: a state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them. Biomed. Eng. Online, 17(1), 2018, 24.
Wright, P., Bernard, G., The role of airflow resistance in patients with the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 139:5 (1989), 1169–1174.
Tawhai, M.H., Burrowes, K., Multi-scale Models of the lung airways and vascular system. Integr. Respir. Control 605:5 (2008), 190–194.
Stocks, J., Quanjer, P.H., Reference values for residual volume, functional residual capacity and total lung capacity: ATS workshop on lung volume measurements official statement of the european respiratory society. Eur. Respir. J. 8:3 (1995), 492–506.
Hooper, S.B., Siew, M.L., Kitchen, M.J., te Pas, A.B., Establishing functional residual capacity in the non-breathing infant. Semin. Fetal Neonatal Med. 18:6 (2013), 336–343.
Harrison, C., Phan, P.A., Zhang, C., Geer, D., Farmery, A., Payne, S., Modeling mixing within the dead space of the lung improves predictions of functional residual capacity. Respir. Physiol. Neurobiol. 242 (2017), 12–18.
Sundaresan, A., Chase, J.G., Hann, C.E., Shaw, G.M., Dynamic functional residual capacity can be estimated using a stress – strain approach. Comput. Methods Progr. Biomed. 101:2 (2010), 135–143.