Desaive, Thomas ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Horikawa, O.; Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos, University of São Paulo, São Paulo, Brazil
Ortiz, J. P.; Departamento de Engenharia Mecânica, University of São Paulo, São Paulo, Brazil
Chase, J. G.; Mechanical Engineering, Centre of Bio-Engineering, University of Canterbury, Christchurch, New Zealand
Language :
English
Title :
Model-based management of cardiovascular failure: Where medicine and control systems converge
Ameloot, K., Meex, I., Genbrugge, C., Jans, F., Malbrain, M., Mullens, W., et al. Accuracy of continuous thermodilution cardiac output monitoring by pulmonary artery catheter during therapeutic hypothermia in post-cardiac arrest patients. Resuscitation 85:9 (2014), 8–1263.
Amerling, R., Winchester, J.F., Ronco, C., Guidelines have done more harm than good. Blood Purification 26:1 (2008), 73–76.
Bally, L., Thabit, H., Hartnell, S., Andereggen, E., Ruan, Y., Wilinska, M.E., et al. Closed-loop insulin delivery for glycemic control in noncritical care. New England Journal of Medicine 379:6 (2018), 547–556.
Balmer, J., Pretty, C., Davidson, S., Desaive, T., Habran, S., Chase, J.G., Effect of arterial pressure measurement location on pulse contour stroke volume estimation, during a rapid change in hemodynamic state. IFAC-PapersOnLine 51:27 (2018), 162–167.
Bangash, M.N., Kong, M.L., Pearse, R.M., Use of inotropes and vasopressor agents in critically ill patients. British Journal of Pharmacology 165:7 (2012), 2015–2033.
Barakat, M., Dvir, D., Azadani, A.N., Fluid Dynamic Characterization of Transcatheter Aortic Valves Using Particle Image Velocimetry. Artificial Organs 42:11 (2018), E357–E368.
Barnard, K.D., Wysocki, T., Ully, V., Mader, J.K., Pieber, T.R., Thabit, H., et al. Closing the loop in adults, children and adolescents with suboptimally controlled type 1 diabetes under free living conditions: a psychosocial substudy. Journal of Diabetes Science and Technology 11:6 (2017), 1080–1088.
Barrett, P.H., Bell, B.M., Cobelli, C., Golde, H., Schumitzky, A., Vicini, P., et al. SAAM II: Simulation, Analysis, and Modeling Software for tracer and pharmacokinetic studies. Metabolism 47:4 (1998), 484–492.
Bates, J.H.T., Pulmonary mechanics: A system identification perspective. Engineering in medicine and biology society, 2009. EMBC 2009. Annual international conference of the IEEE, 2009.
Baumol, W.J., De Ferranti, D.M., The cost disease: why computers get cheaper and health care doesn't. 2012, Yale University Press, New Haven xxi, 249 p.
Bazan, O., Ortiz, J.P., Experimental validation of a cardiac simulator for in vitro evaluation of prosthetic heart valves. Brazilian Journal of Cardiovascular Surgery 31:2 (2016), 151–157.
Bazan, O., Ortiz, J.P., Fukumasu, N.K., Pacifico, A.L., Yanagihara, J.I., Influence of Tricuspid Bioprosthetic Mitral Valve Orientation Regarding the Flow Field Inside the Left Ventricle: In Vitro Hydrodynamic Characterization Based on 2D PIV Measurements. Artificial Organs 40:2 (2016), 175–179.
Bendjelid, K., Romand, J.A., Fluid responsiveness in mechanically ventilated patients: A review of indices used in intensive care. Intensive Care Medicine 29:3 (2003), 60–352.
Benes, J., Zatloukal, J., Kletecka, J., Simanova, A., Haidingerova, L., Pradl, R., Respiratory induced dynamic variations of stroke volume and its surrogates as predictors of fluid responsiveness: Applicability in the early stages of specific critical states. Journal of Clinical Monitoring and Computing 28:3 (2014), 225–231.
Ben-Tal, A., Simplified models for gas exchange in the human lungs. Journal of Theoretical Biology 238:2 (2006), 474–495.
Bergman, R.N., Ider, Y.Z., Bowden, C.R., Cobelli, C., Quantitative estimation of insulin sensitivity. American Journal of Physiology 236:6 (1979), E667–E677.
Bernard, G.R., Sopko, G., Cerra, F., Demling, R., Edmunds, H., Kaplan, S., et al. Pulmonary artery catheterization and clinical outcomes: National Heart, Lung, and Blood Institute and Food and Drug Administration Workshop Report. Consensus Statement. JAMA 283:19 (2000), 72–2568.
Biais, M., Ehrmann, S., Mari, A., Conte, B., Mahjoub, Y., Desebbe, O., et al. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: The grey zone approach. Critical Care (London, England), 18(6), 2014, 587.
Bracht, H., Calzia, E., Georgieff, M., Singer, J., Radermacher, P., Russell, J.A., Inotropes and vasopressors: More than haemodynamics!. British Journal of Pharmacology 165:7 (2012), 11–2009.
Bradley, C., Bowery, A., Britten, R., Budelmann, V., Camara, O., Christie, R., et al. OpenCMISS: A multi-physics & multi-scale computational infrastructure for the VPH/Physiome project. Progress in Biophysics and Molecular Biology 107:1 (2011), 32–47.
Callegari, T., Caumo, A., Cobelli, C., Bayesian two-compartment and classic single-compartment minimal models: Comparison on insulin modified IVGTT and effect of experiment reduction. IEEE Transactions on Bio-Medical Engineering 50:12 (2003), 1301–1309.
Cannesson, M., Le Manach, Y., Hofer, C.K., Goarin, J.P., Lehot, J.J., Vallet, B., et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: A "gray zone" approach. Anesthesiology 115:2 (2011), 231–241.
Capoccia, M., Development and characterization of the arterial windkessel and its role during left ventricular assist device assistance. Artificial Organs 39:8 (2015), E138–E153.
Carson, E.R., Cobelli, C., Modelling methodology for physiology and medicine. 2001, Academic Press Series in Biomedical Engineering P. xiv, 421.
Cecconi, M., De Backer, D., Antonelli, M., Beale, R., Bakker, J., Hofer, C., et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Medicine 40:12 (2014), 1795–1815.
Cecconi, M., Hofer, C., Teboul, J.L., Pettila, V., Wilkman, E., Molnar, Z., et al. Fluid challenges in intensive care: The FENICE study: A global inception cohort study. Intensive Care Medicine 41:9 (2015), 1529–1537.
Cecconi, M., Rhodes, A., Validation of continuous cardiac output technologies: Consensus still awaited. Critical Care (London, England), 13(3), 2009, 159.
Chase, J.G., Desaive, T., Bohe, J., Cnop, M., De Block, C., Gunst, J., et al. Improving glycemic control in critically ill patients: Personalized care to mimic the endocrine pancreas. Critical Care (London, England), 22(1), 2018, 182.
Chase, J.G., Le Compte, A.J., Preiser, J.C., Shaw, G.M., Penning, S., Desaive, T., Physiological modeling, tight glycemic control, and the ICU clinician: What are models and how can they affect practice?. Annals of Intensive Care, 1(1), 2011, 11.
Chase, J.G., Preiser, J.C., Dickson, J.L., Pironet, A., Chiew, Y.S., Pretty, C.G., et al. Next-generation, personalised, model-based critical care medicine: A state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them. Biomedical Engineering Online [Electronic Resource], 17(1), 2018, 24.
Chase, J., LeCompte, A., Shaw, G., Blakemore, A., Wong, J., Lin, J., et al. A Benchmark Data Set for Model-Based Glycemic Control in Critical Care. Journal of Diabetes Science and Technology (JoDST) 24:4 (2008), 584–594.
Chase, J., Shaw, G., Wong, X., Lotz, T., Lin, J., Hann, C., Model-based glycaemic control in critical care—A review of the state of the possible. Biomedical Signal Processing and Control 1:1 (2006), 3–21.
Chatterjee, K., The Swan-Ganz catheters: Past, present, and future. A viewpoint. Circulation 119:1 (2009), 52–147.
Chung, C.S., Strunc, A., Oliver, R., Kovacs, S.J., Diastolic ventricular-vascular stiffness and relaxation relation: Elucidation of coupling via pressure phase plane-derived indexes. American Journal of Physiology. Heart and Circulatory Physiology 291:5 (2006), H2415–H2423.
Cobelli, C., Caumo, A., Omenetto, M., Minimal model SG overestimation and SI underestimation: Improved accuracy by a Bayesian two-compartment model. American Journal of Physiology 277:3 Pt 1 (1999), E481–E488.
Cohen, M.J., Use of models in identification and prediction of physiology in critically ill surgical patients. British Journal of Surgery 99:4 (2012), 487–493.
Cooling, M.T., Hunter, P., The CellML Metadata Framework 2.0 Specification. Journal of Integrative Bioinformatics, 12(2), 2015, 260.
Correa, T.D., Jakob, S.M., Takala, J., Arterial blood pressure targets in septic shock: Is it time to move to an individualized approach?. Critical Care (London, England), 19, 2015, 264.
Critchley, L.A., Critchley, J.A., A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. Journal of Clinical Monitoring and Computing 15:2 (1999), 85–91.
Dalla Man, C., Camilleri, M., Cobelli, C., A system model of oral glucose absorption: Validation on gold standard data. Ieee Transactions on Bio-Medical Engineering 53:12 Pt 1 (2006), 2472–2478.
Dalla Man, C., Caumo, A., Cobelli, C., The oral glucose minimal model: Estimation of insulin sensitivity from a meal test. IEEE Transactions on Biomedical Engineering 49:5 (2002), 419–429.
de Andrade, G.C., de Andrade, A.J.P., da Fonseca, J.W.G., da Silva, B.U., Drigo, E., Cardoso, J.R., et al. Development of a Transventricular Assist Device (TVAD) – influence of the volute vanes. IFAC-PapersOnLine 51:27 (2018), 158–161.
De Backer, D., Taccone, F.S., Holsten, R., Ibrahimi, F., Vincent, J.L., Influence of respiratory rate on stroke volume variation in mechanically ventilated patients. Anesthesiology 110:5 (2009), 7–1092.
De Backer, D., Vincent, J.L., Should we measure the central venous pressure to guide fluid management? Ten answers to 10 questions. Critical Care (London, England), 22(1), 2018, 43.
de Bono, B., Safaei, S., Grenon, P., Hunter, P., Meeting the multiscale challenge: Representing physiology processes over ApiNATOMY circuits using bond graphs. Interface Focus, 8(1), 2018, 20170026.
Del Favero, S., Place, J., Kropff, J., Messori, M., Keith-Hynes, P., Visentin, R., et al. Multicenter outpatient dinner/overnight reduction of hypoglycemia and increased time of glucose in target with a wearable artificial pancreas using modular model predictive control in adults with type 1 diabetes. Diabetes, Obesity & Metabolism 17:5 (2015), 468–476.
Denti, P., Bertoldo, A., Vicini, P., Cobelli, C., Identification of IVGTT minimal glucose model by nonlinear mixed-effects approaches. Conference proceddings-ieee engneering in medicine and biology society, 1, 2006, 5049–5052.
Derendorf, H., Meibohm, B., Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: Concepts and perspectives. Pharmaceutical Research 16:2 (1999), 176–185.
Derendorf, H., Mollmann, H., Hochhaus, G., Meibohm, B., Barth, J., Clinical PK/PD modelling as a tool in drug development of corticosteroids. International Journal of Clinical Pharmacology and Therapeutics 35:10 (1997), 481–488.
Desaive, T., Ghuysen, A., Lambermont, B., Kolh, P., Dauby, P.C., Starfinger, C., et al. Study of ventricular interaction during pulmonary embolism using clinical identification in a minimum cardiovascular system model. Conference Proceddings-IEEE Engneering in Medicine and Biology Society 2007 (2007), 9–2976.
Di Molfetta, A., Ferrari, G., Iacobelli, R., Filippelli, S., Fresiello, L., Guccione, P., et al. Application of a lumped parameter model to study the feasibility of simultaneous implantation of a continuous flow Ventricular Assist Device (VAD) and a pulsatile flow VAD in BIVAD patients. Artificial Organs 41:3 (2017), 242–252.
Docherty, P.D., Chase, J.G., David, T., Characterisation of the iterative integral parameter identification method. Medical & Biological Engineering & Computing 50:2 (2012), 127–134.
Docherty, P.D., Chase, J.G., Lotz, T.F., Desaive, T., A graphical method for practical and informative identifiability analyses of physiological models: A case study of insulin kinetics and sensitivity. Biomedical Engineering Online [Electronic Resource], 10, 2011, 39.
Dunser, M.W., Takala, J., Brunauer, A., Bakker, J., Re-thinking resuscitation: Leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Critical Care, 17(5), 2013, 326.
Economist, T., Patient, heal thyself. 2011, The Economist, London, UK, 2 The Economist.
Eslami, S., Abu-Hanna, A., de Jonge, E., de Keizer, N.F., Tight glycemic control and computerized decision-support systems: A systematic review. Intensive Care Medicine 35:9 (2009), 1505–1517.
Fernandez, A., Sturmberg, J., Lukersmith, S., Madden, R., Torkfar, G., Colagiuri, R., et al. Evidence-based medicine: Is it a bridge too far?. Health Research and Policy Systems, 13, 2015, 66.
Frazier, S.K., Skinner, G.J., Pulmonary artery catheters: State of the controversy. Journal of Cardiovascular Nursing 23:2 (2008), 21–113 quiz 122-3.
Gambus, P.L., Troconiz, I.F., Pharmacokinetic-pharmacodynamic modelling in anaesthesia. British Journal of Clinical Pharmacology 79:1 (2015), 72–84.
Garny, A., Hunter, P.J., OpenCOR: A modular and interoperable approach to computational biology. Frontiers in Physiology, 6, 2015, 26.
Godsland, I.F., Agbaje, O.F., Hovorka, R., Evaluation of nonlinear regression approaches to estimation of insulin sensitivity by the minimal model with reference to Bayesian hierarchical analysis. American Journal of Physiology. Endocrinology and Metabolism 291:1 (2006), 74–E167.
Goldstein, D.J., Worldwide experience with the MicroMed DeBakey Ventricular Assist Device as a bridge to transplantation. Circulation 108:Suppl.1 (2003), II272–II277.
Hann, C.E., Chase, J.G., Lin, J., Lotz, T., Doran, C.V., Shaw, G.M., Integral-based parameter identification for long-term dynamic verification of a glucose-insulin system model. Computer Methods and Programs in Biomedicine 77:3 (2005), 259–270.
Hann, C.E., Chase, J.G., Shaw, G.M., Integral-based identification of patient specific parameters for a minimal cardiac model. Computer Methods and Programs in Biomedicine 81:2 (2006), 181–192.
Hann, C.E., Chase, J.G., Shaw, G.M., Smith, B.W., Identification of patient specific parameters for a minimal cardiac model. Conference Proceddings-IEEE Engneering in Medicine and Biology Society, 2, 2004, 813–816.
Hollenberg, S.M., Inotrope and vasopressor therapy of septic shock. Critical Care Clinics 25:4 (2009), 781–802 ix.
Horster, S., Stemmler, H.J., Strecker, N., Brettner, F., Hausmann, A., Cnossen, J., et al. Cardiac output measurements in septic patients: comparing the accuracy of USCOM to PiCCO. Critical Care Research and Practice, 2012, 2012, 270631.
Hovorka, R., Chassin, L.J., Ellmerer, M., Plank, J., Wilinska, M.E., A simulation model of glucose regulation in the critically ill. Physiological Measurement 29:8 (2008), 959–978.
Hovorka, R., Chassin, L.J., Wilinska, M.E., Virtual type 1 diabetic treated by CSII: Model description. WC2003, Sydney, Australia, 2003.
Huber, W., Koenig, J., Mair, S., Schuster, T., Saugel, B., Eyer, F., et al. Predictors of the accuracy of pulse-contour cardiac index and suggestion of a calibration-index: A prospective evaluation and validation study. BMC Anesthesiol, 15, 2015, 45.
Hunter, P.J., Crampin, E.J., Nielsen, P.M., Bioinformatics, multiscale modeling and the IUPS Physiome Project. Briefings in Bioinformatics 9:4 (2008), 333–343.
Hunter, P., Chapman, T., Coveney, P.V., de Bono, B., Diaz, V., Fenner, J., et al. A vision and strategy for the virtual physiological human: 2012 update. Interface Focus, 3(2), 2013, 20130004.
Jansen, J.R., Maas, J.J., Pinsky, M.R., Bedside assessment of mean systemic filling pressure. Current Opinion in Critical Care 16:3 (2010), 231–236.
Kamoi, S., Pretty, C., Balmer, J., Davidson, S., Pironet, A., Desaive, T., et al. Improved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement. Biomedical Engineering Online [Electronic Resource], 16(1), 2017, 51.
Kamoi, S., Pretty, C., Docherty, P., Squire, D., Revie, J., Chiew, Y.S., et al. Continuous stroke volume estimation from aortic pressure using zero dimensional cardiovascular model: Proof of concept study from porcine experiments. Plos One, 9(7), 2014, e102476.
Keener, J.P., Sneyd, J., Mathematical physiology. Interdisciplinary applied mathematics, 8, 1998, Springer, New York viii, 766 p.
Kelly, R.P., Ting, C.T., Yang, T.M., Liu, C.P., Maughan, W.L., Chang, M.S., et al. Effective arterial elastance as index of arterial vascular load in humans. Circulation 86:2 (1992), 513–521.
Kim, H.J., Vignon-Clementel, I.E., Coogan, J.S., Figueroa, C.A., Jansen, K.E., Taylor, C.A., Patient-specific modeling of blood flow and pressure in human coronary arteries. Annals of Biomedical Engineering 38:10 (2010), 3195–3209.
Korakianitis, T., Shi, Y., Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. Journal of Biomechanics 39:11 (2006), 1964–1982.
Le Rolle, V., Hernandez, A.I., Richard, P.Y., Buisson, J., Carrault, G., A bond graph model of the cardiovascular system. Acta Biotheoretica 53:4 (2005), 295–312.
Lira, A., Pinsky, M.R., Choices in fluid type and volume during resuscitation: Impact on patient outcomes. Annals of Intensive Care, 4, 2014, 38.
Litton, E., Morgan, M., The PiCCO monitor: A review. Anaesthesia and Intensive Care 40:3 (2012), 393–409.
Ljung, L., System identification: theory for the user. 2nd ed., 1999, Prentice Hall PTR., Upper Saddle River, NJ Prentice Hall information and system sciences seriesxxii, 609 p.
Ljung, L., & Glad, T. (1994).On global identifiability for arbitrary model parametrizations%J Automatica. 30(2),: P. 265–276.
Ljung, L., Söderström, T., Theory and practice of recursive identification. 1983, MIT Press, Cambridge, Mass. The MIT Press series in signal processing, optimization, and controlxix, 529 p.
Maas, J.J., Geerts, B.F., van den Berg, P.C., Pinsky, M.R., Jansen, J.R., Assessment of venous return curve and mean systemic filling pressure in postoperative cardiac surgery patients. Critical Care Medicine 37:3 (2009), 912–918.
Maas, J.J., Pinsky, M.R., Aarts, L.P., Jansen, J.R., Bedside assessment of total systemic vascular compliance, stressed volume, and cardiac function curves in intensive care unit patients. Anesthesia and Analgesia 115:4 (2012), 880–887.
Magder, S., Understanding central venous pressure: Not a preload index?. Current Opinion in Critical Care 21:5 (2015), 369–375.
Magni, P., Sparacino, G., Bellazzi, R., Cobelli, C., Reduced sampling schedule for the glucose minimal model: Importance of Bayesian estimation. American Journal of Physiology. Endocrinology and Metabolism 290:1 (2006), E177–E184.
Magni, P., Sparacino, G., Bellazzi, R., Toffolo, G.M., Cobelli, C., Insulin minimal model indexes and secretion: Proper handling of uncertainty by a Bayesian approach. Annals of Biomedical Engineering 32:7 (2004), 1027–1037.
Mahjoub, Y., Lejeune, V., Muller, L., Perbet, S., Zieleskiewicz, L., Bart, F., et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: A prospective observational multicentre point-prevalence study. British Journal of Anaesthesia 112:4 (2014), 681–685.
Malbrain, M., Van Regenmortel, N., Saugel, B., De Tavernier, B., Van Gaal, P.J., Joannes-Boyau, O., et al. Principles of fluid management and stewardship in septic shock: It is time to consider the four D's and the four phases of fluid therapy. Annals of Intensive Care, 8(1), 2018, 66.
Man, C.D., Breton, M.D., Cobelli, C., Physical activity into the meal glucose-insulin model of type 1 diabetes: In silico studies. Journal of Diabetes Science and Technology 3:1 (2009), 56–67.
Manning, T.S., Shykoff, B.E., Izzo, J.L. Jr., Validity and reliability of diastolic pulse contour analysis (windkessel model) in humans. Hypertension 39:5 (2002), 963–968.
Marik, P.E., Techniques for assessment of intravascular volume in critically ill patients. Journal of Intensive Care Medicine 24:5 (2009), 329–337.
Marik, P.E., Lemson, J., Fluid responsiveness: An evolution of our understanding. British Journal of Anaesthesia 112:4 (2014), 617–620.
Marik, P.E., Monnet, X., Teboul, J.L., Hemodynamic parameters to guide fluid therapy. Annals of Intensive Care, 1(1), 2011, 1.
Meibohm, B., Derendorf, H., Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. International Journal of Clinical Pharmacology and Therapeutics 35:10 (1997), 401–413.
Michard, F., Chemla, D., Teboul, J.L., Applicability of pulse pressure variation: How many shades of grey?. Critical Care (London, England), 19, 2015, 144.
Michard, F., Teboul, J.L., Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Critical Care (London, England) 4:5 (2000), 9–282.
Micklethwait, J., Taming leviathan. 2011, The Economist, London, UK, 6 The Economist.
Monnet, X., Marik, P.E., Teboul, J.L., Prediction of fluid responsiveness: An update. Annals of Intensive Care, 6(1), 2016, 111.
Monnet, X., Teboul, J.L., Volume responsiveness. Current Opinion in Critical Care 13:5 (2007), 549–553.
Morris, P.D., Narracott, A., von Tengg-Kobligk, H., Silva Soto, D.A., Hsiao, S., Lungu, A., et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart (British Cardiac Society) 102:1 (2016), 18–28.
Motulsky, H., Intuitive Biostatistics: a nonmathematical guide to statistical thinking. 2010, Oxford University Press.
Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J., Cushman, M., et al. Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation 133:4 (2016), e38–360.
Naylor, A.R., Interventions for carotid artery disease: Time to confront some 'inconvenient truths'. Expert Review of Cardiovascular Therapy 5:6 (2007), 1053–1063.
Nickerson, D.P., Ladd, D., Hussan, J.R., Safaei, S., Suresh, V., Hunter, P.J., et al. Using CellML with OpenCMISS to simulate multi-scale physiology. Frontiers in Bioengineering and Biotechnology, 2, 2014, 79.
Norton, J.P., An introduction to identification. Dover ed, 2009, Dover Publications, Mineola, N.Y. x, 310 p.
Nouira, S., Elatrous, S., Dimassi, S., Besbes, L., Boukef, R., Mohamed, B., et al. Effects of norepinephrine on static and dynamic preload indicators in experimental hemorrhagic shock. Critical Care Medicine 33:10 (2005), 2339–2343.
OECD. FOCUS on Health Spending @ OECD Health Statistics. 2015. OECD Health Statistics 2015, 2015, July 2015, 1–8.
Overgaard, C.B., Dzavik, V., Inotropes and vasopressors: Review of physiology and clinical use in cardiovascular disease. Circulation 118:10 (2008), 1047–1056.
Pai, C.N., Shinshi, T., Shimokohbe, A., Sensorless measurement of pulsatile flow rate using a disturbance force observer in a magnetically levitated centrifugal blood pump during ventricular assistance. Flow Measurement and Instrumentation 21:1 (2010), 33–39.
Phillips, R., Brierley, J., Fluid responsiveness is about stroke volume, and not pulse pressure Yogi: The power of Doppler fluid management and cardiovascular monitoring. Journal of Clinical Monitoring and Computing 29:1 (2015), 197–200.
Pielmeier, U., Andreassen, S., Nielsen, B.S., Chase, J.G., Haure, P., A simulation model of insulin saturation and glucose balance for glycemic control in ICU patients. Computer Methods and Programs in Biomedicine 97:3 (2010), 211–222.
Pillonetto, G., Caumo, A., Sparacino, G., Cobelli, C., A new dynamic index of insulin sensitivity. IEEE Transactions on Bio-Medical Engineering 53:3 (2006), 369–379.
Pironet, A., Dauby, P.C., Chase, J.G., Docherty, P.D., Revie, J.A., Desaive, T., Structural identifiability analysis of a cardiovascular system model. Medical Engineering and Physics 38:5 (2016), 41–433.
Pironet, A., Dauby, P.C., Morimont, P., Janssen, N., Chase, J.G., Davidson, S., et al. Model-based decision support algorithm to guide fluid resuscitation**This work was supported by the French Community of Belgium, the Belgian Funds for Scientific Research (F.R.S.-FNRS) and EU Marie Curie Actions (FP7-PEOPLE-2012-IRSES). IFAC-PapersOnLine 49:5 (2016), 224–229.
Pironet, A., Desaive, T., Geoffrey Chase, J., Morimont, P., Dauby, P.C., Model-based computation of total stressed blood volume from a preload reduction manoeuvre. Mathematical Biosciences 265 (2015), 28–39.
Pironet, A., Desaive, T., Kosta, S., Lucas, A., Paeme, S., Collet, A., et al. A multi-scale cardiovascular system model can account for the load-dependence of the end-systolic pressure-volume relationship. Biomedical Engineering Online [Electronic Resource], 12, 2013, 8.
Pironet, A., Docherty, P.D., Dauby, P.C., Chase, J.G., Desaive, T., Practical identifiability analysis of a minimal cardiovascular system model. Computer Methods and Programs in Biomedicine, 2017.
Polderman, K.H., Varon, J., Do not drown the patient: Appropriate fluid management in critical illness. American Journal of Emergency Medicine 33:3 (2015), 448–450.
Ponikowski, P., Voors, A.A., Anker, S.D., Bueno, H., Cleland, J.G.F., Coats, A.J.S., et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal 37:27 (2016), 2129–2200.
Pugsley, J., Lerner, A.B., Cardiac output monitoring: Is there a gold standard and how do the newer technologies compare?. Seminars in Cardiothoracic and Vascular Anesthesia 14:4 (2010), 274–282.
Quick, C.M., Berger, D.S., Noordergraaf, A., Apparent arterial compliance. American Journal of Physiology 274:4 Pt 2 (1998), H1393–H1403.
Rajaram, S.S., Desai, N.K., Kalra, A., Gajera, M., Cavanaugh, S.K., Brampton, W., et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database of Systematic Reviews (Online)(2), 2013, CD003408.
Reuter, D.A., Bayerlein, J., Goepfert, M.S., Weis, F.C., Kilger, E., Lamm, P., et al. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Medicine 29:3 (2003), 80–476.
Reuter, D.A., Felbinger, T.W., Kilger, E., Schmidt, C., Lamm, P., Goetz, A.E., Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations. Comparison with aortic systolic pressure variations. British Journal of Anaesthesia 88:1 (2002), 6–124.
Revie, J.A., Stevenson, D.J., Chase, J.G., Hann, C.E., Lambermont, B.C., Ghuysen, A., et al. Clinical detection and monitoring of acute pulmonary embolism: Proof of concept of a computer-based method. Annals od Intensive Care, 1(1), 2011, 33.
Revie, J., Stevenson, D., Chase, J.G., Pretty, C., Lambermont, B., Ghuysen, A., et al. Evaluation of a Model-Based Hemodynamic Monitoring Method in a Porcine Study of Septic Shock. Computational and Mathematical Methods in Med 2013 (2013), 17–pages (Article ID:505417).
Rudge, A.D., Chase, J.G., Shaw, G.M., Lee, D., Physiologically-based minimal model of agitation-sedation dynamics. Conference proceedings-IEEE engineering in medicine and biology society, 1, 2004, 774–777.
Rudge, A.D., Chase, J.G., Shaw, G.M., Lee, D., Physiological modelling of agitation-sedation dynamics including endogenous agitation reduction. Medical Engineering & Physics 28:7 (2006), 38–629.
Rudge, A.D., Chase, J.G., Shaw, G.M., Lee, D., Physiological modelling of agitation-sedation dynamics. Medical Engineering & Physics 28:1 (2006), 49–59.
Rudge, A., Wake, G., Dove, R., Starfinger, C., Greenfield, K., Shaw, G., et al. Rethinking sedation and agitation management in critical illness. Critical Care and Resuscitation, 5(3), 2003, 198.
Sadean, M.R., Glass, P.S., Pharmacokinetic-pharmacodynamic modeling in anesthesia, intensive care and pain medicine. Current Opinion in Anaesthesiology 22:4 (2009), 463–468.
Safaei, S., Blanco, P.J., Muller, L.O., Hellevik, L.R., Hunter, P.J., Bond graph model of cerebral circulation: toward clinically feasible systemic blood flow simulations. Frontiers in Physiology, 9, 2018, 148.
Sakka, S.G., Kozieras, J., Thuemer, O., van Hout, N., Measurement of cardiac output: A comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis. British Journal of Anaesthesia 99:3 (2007), 337–342.
Scott, M.C., Mallemat, H., Assessing volume status. Emergency Medicine Clinics of North America 32:4 (2014), 811–822.
Shimizu, S., Une, D., Kawada, T., Hayama, Y., Kamiya, A., Shishido, T., et al. Lumped parameter model for hemodynamic simulation of congenital heart diseases. Journal of Physiological Science 68:2 (2018), 103–111.
Siranovic, M., Kovac, J., Gopcevic, A., Kelecic, M., Vucic, M., Kovac, N., et al. Constant cardiac output monitoring using the PiCCO and LiDCO methods versus PAK in septic patients: When to do calibration?. Acta Clinica Croatica 50:2 (2011), 72–267.
Sirois, E., Wang, Q., Sun, W., Fluid Simulation of a Transcatheter Aortic Valve Deployment into a Patient-Specific Aortic Root. Cardiovascular Engineering and Technology 2:3 (2011), 186–195.
Smith, B.W., Chase, J.G., Nokes, R.I., Shaw, G.M., Wake, G., Minimal haemodynamic system model including ventricular interaction and valve dynamics. Medical Engineering & Physics 26:2 (2004), 131–139.
Smith, B.W., Geoffrey Chase, J., Shaw, G.M., Nokes, R.I., Experimentally verified minimal cardiovascular system model for rapid diagnostic assistance. Control Engineering Practice 13:9 (2005), 1183–1193.
Smith, N., Waters, S., Hunter, P., Clayton, R., The cardiac physiome: Foundations and future prospects for mathematical modelling of the heart. Progress in Biophysics and Molecular Biology, 104(1–3), 2011, 1.
Squara, P., Cecconi, M., Rhodes, A., Singer, M., Chiche, J.D., Tracking changes in cardiac output: Methodological considerations for the validation of monitoring devices. Intensive Care Medicine 35:10 (2009), 1801–1808.
Starfinger, C., Chase, J., Hann, C., Shaw, G., Lambermont, B., Ghuysen, A., et al. Model-based identification and diagnosis of a porcine model of induced endotoxic shock with hemofiltration. Mathematical Biosciences 216:2 (2008), 132–139.
Starfinger, C., Hann, C.E., Chase, J.G., Desaive, T., Ghuysen, A., Shaw, G.M., Model-based cardiac diagnosis of pulmonary embolism. Computer Methods and Programs in Biomedicine 87:1 (2007), 46–60.
Stergiopulos, N., Meister, J.J., Westerhof, N., Evaluation of methods for estimation of total arterial compliance. American Journal of Physiology 268:4 Pt 2 (1995), H1540–H1548.
Stewart, K.W., Pretty, C.G., Tomlinson, H., Thomas, F.L., Homlok, J., Noemi, S.N., et al. Safety, efficacy and clinical generalization of the STAR protocol: A retrospective analysis. Annals of Intensive Care, 6(1), 2016, 24.
Tawhai, M.H., Burrowes, K.S., Hoffman, E.A., Computational models of structure-function relationships in the pulmonary circulation and their validation. Experimental Physiology 91:2 (2006), 285–293.
Tawhai, M.H., Hoffman, E.A., Lin, C.-L., The lung physiome: Merging imaging-based measures with predictive computational models. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 1:1 (2009), 61–72.
Tawhai, M.H., Lin, C.-L., Image-based modeling of lung structure and function. Journal of Magnetic Resonance Imaging 32:6 (2010), 1421–1431.
Thomaseth, K., Cobelli, C., Generalized sensitivity functions in physiological system identification. Annals of Biomedical Engineering 27:5 (1999), 607–616.
Toffolo, G., Cobelli, C., The hot IVGTT two-compartment minimal model: An improved version. American Journal of Physiology. Endocrinology and Metabolism 284:2 (2003), E317–E321.
van den Berg, J.P., Vereecke, H.E., Proost, J.H., Eleveld, D.J., Wietasch, J.K., Absalom, A.R., Struys, M.M., Pharmacokinetic and pharmacodynamic interactions in anaesthesia. A review of current knowledge and how it can be used to optimize anaesthetic drug administration. British Journal of Anaesthesia 118:1 (2017), 44–57.
van Haren, F., Personalised fluid resuscitation in the ICU: Still a fluid concept?. Critical Care (London, England), 21(Suppl 3), 2017, 313.
Vincent, J.L., De Backer, D., Circulatory shock. New England Journal of Medicine, 370(6), 2014, 583.
Vodovotz, Y., Billiar, T.R., In silico modeling: Methods and applications to trauma and sepsis. Critical Care Medicine 41:8 (2013), 2008–2014.
Votta, E., Le, T.B., Stevanella, M., Fusini, L., Caiani, E.G., Redaelli, A., et al. Toward patient-specific simulations of cardiac valves: State-of-the-art and future directions. Journal of Biomechanics 46:2 (2013), 217–228.
Wang, J.J., O'Brien, A.B., Shrive, N.G., Parker, K.H., Tyberg, J.V., Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. American Journal of Physiology. Heart and Circulatory Physiology 284:4 (2003), 68–H1358.
Westerhof, N., Lankhaar, J.W., Westerhof, B.E., The arterial Windkessel. Medical & Biological Engineering & Computing 47:2 (2009), 131–141.
Wilinska, M.E., Chassin, L.J., Acerini, C.L., Allen, J.M., Dunger, D.B., Hovorka, R., Simulation environment to evaluate closed-loop insulin delivery systems in type 1 diabetes. Journal of Diabetes Science and Technology 4:1 (2010), 132–144.
Wilinska, M.E., Chassin, L., Hovorka, R., In Silico Testing—Impact on the Progress of the Closed Loop Insulin Infusion for Critically Ill Patients Project. Journal of Diabetes Science and Technology 2:3 (2008), 417–423.
Wujtewicz, M., Fluid use in adult intensive care. Anaesthesiol Intensive Ther 44:2 (2012), 92–95.
Xu, F., Wang, Q., Zhang, H., Chen, S., Ao, H., Use of pulmonary artery catheter in coronary artery bypass graft. Costs and long-term outcomes. Plos One, 10(2), 2015, e0117610.
Yoganathan, A.P., Chandran, K.B., Sotiropoulos, F., Flow in prosthetic heart valves: State-of-the-art and future directions. Annals of Biomedical Engineering 33:12 (2005), 1689–1694.
Young, J.D., The heart and circulation in severe sepsis. British Journal of Anaesthesia 93:1 (2004), 114–120.
Yu, T., Lloyd, C.M., Nickerson, D.P., Cooling, M.T., Miller, A.K., Garny, A., et al. The physiome model repository 2. Bioinformatics 27:5 (2011), 743–744.