Huibregtse, J.M., Scheffner, M., Howley, P.M., Acellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 10 (1991), 4129–4135.
Huibregtse, J.M., Scheffner, M., Howley, P.M., Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol. Cell. Biol. 13 (1993), 775–784.
Huibregtse, J.M., Scheffner, M., Howley, P.M., E6-AP directs the HPV E6-dependent inactivation of p53 and is representative of a family of structurally and functionally related proteins. Cold Spring Harb. Symp. Quant. Biol. 59 (1994), 237–245.
Scheffner, M., Huibregtse, J.M., Vierstra, R.D., Howley, P.M., The HPV-16 E6 and E6-AP complex functions as a ubiquitin–protein ligase in the ubiquitination of p53. Cell 75 (1993), 495–505.
Yamamoto, Y., Huibregtse, J.M., Howley, P.M., The human E6-AP gene (UBE3A) encodes three potential protein isoforms generated by differential splicing. Genomics 41 (1997), 263–266.
Vu, T.H., Hoffman, A.R., Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain. Nat. Genet. 17 (1997), 12–13.
Rougeulle, C., Glatt, H., Lalande, M., The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat. Genet. 17 (1997), 14–15.
Guffanti, G., Strik Lievers, L., Bonati, M.T., Marchi, M., Geronazzo, L., Nardocci, N., et al. Role of UBE3A and ATP10A genes in autism susceptibility region 15q11–q13 in an Italian population: a positive replication for UBE3A. Psychiatry Res. 185 (2011), 33–38.
Nurmi, E.L., Bradford, Y., Chen, Y., Hall, J., Arnone, B., Gardiner, M.B., et al. Linkage disequilibrium at the Angelman syndrome gene UBE3A in autism families. Genomics 77 (2001), 105–113.
Smith, S.E., Zhou, Y.D., Zhang, G., Jin, Z., Stoppel, D.C., Anderson, M.P., Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci. Transl. Med., 3, 2011, 103ra97.
Angelman, H., ‘Puppet’ Children A Report on Three Cases. Dev. Med. Child Neurol. 7 (1965), 681–688.
Williams, C.A., Driscoll, D.J., Dagli, A.I., Clinical and genetic aspects of Angelman syndrome. Genet Med. 12 (2010), 385–395.
Buiting, K., Williams, C., Horsthemke, B., Angelman syndrome—insights into a rare neurogenetic disorder. Nat. Rev. Neurol. 12 (2016), 584–593.
Sadikovic, B., Fernandes, P., Zhang, V.W., Ward, P.A., Miloslavskaya, I., Rhead, W., et al. Mutation Update for UBE3A variants in Angelman syndrome. Hum. Mutat. 35 (2014), 1407–1417.
Weeber, E.J., Jiang, Y.H., Elgersma, Y., Varga, A.W., Carrasquillo, Y., Brown, S.E., et al. Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J. Neurosci. 23 (2003), 2634–2644.
van Woerden, G.M., Harris, K.D., Hojjati, M.R., Gustin, R.M., Qiu, S., de Avila Freire, R., et al. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat. Neurosci. 10 (2007), 280–282.
Kumar, S., Talis, A.L., Howley, P.M., Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination. J. Biol. Chem. 274 (1999), 18785–18792.
Kleijnen, M.F., Alarcon, R.M., Howley, P.M., The ubiquitin-associated domain of hPLIC-2 interacts with the proteasome. Mol. Biol. Cell 14 (2003), 3868–3875.
Kleijnen, M.F., Shih, A.H., Zhou, P., Kumar, S., Soccio, R.E., Kedersha, N.L., et al. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol. Cell 6 (2000), 409–419.
Tomaic, V., Banks, L., Angelman syndrome-associated ubiquitin ligase UBE3A/E6AP mutants interfere with the proteolytic activity of the proteasome. Cell Death Dis., 6, 2015, e1625.
Lee, S.Y., Ramirez, J., Franco, M., Lectez, B., Gonzalez, M., Barrio, R., et al. Ube3a, the E3 ubiquitin ligase causing Angelman syndrome and linked to autism, regulates protein homeostasis through the proteasomal shuttle Rpn10. Cell. Mol. Life Sci. 71 (2014), 2747–2758.
Wang, X., Chen, C.F., Baker, P.R., Chen, P.L., Kaiser, P., Huang, L., Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46 (2007), 3553–3565.
Besche, H.C., Haas, W., Gygi, S.P., Goldberg, A.L., Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. Biochemistry 48 (2009), 2538–2549.
Scanlon, T.C., Gottlieb, B., Durcan, T.M., Fon, E.A., Beitel, L.K., Trifiro, M.A., Isolation of human proteasomes and putative proteasome-interacting proteins using a novel affinity chromatography method. Exp. Cell Res. 315 (2009), 176–189.
Tai, H.C., Besche, H., Goldberg, A.L., Schuman, E.M., Characterization of the brain 26S proteasome and its interacting proteins. Front. Mol. Neurosci., 3, 2010.
Martinez-Noel, G., Galligan, J.T., Sowa, M.E., Arndt, V., Overton, T.M., Harper, J.W., et al. Identification and proteomic analysis of distinct UBE3A/E6AP protein complexes. Mol. Cell. Biol. 32 (2012), 3095–3106.
Kuhnle, S., Kogel, U., Glockzin, S., Marquardt, A., Ciechanover, A., Matentzoglu, K., et al. Physical and functional interaction of the HECT ubiquitin–protein ligases E6AP and HERC2. J. Biol. Chem. 286 (2011), 19410–19416.
Galligan, J.T., Martinez-Noel, G., Arndt, V., Hayes, S., Chittenden, T.W., Harper, J.W., et al. Proteomic analysis and identification of cellular interactors of the giant ubiquitin ligase HERC2. J. Proteome Res. 14 (2015), 953–966.
Puffenberger, E.G., Jinks, R.N., Wang, H., Xin, B., Fiorentini, C., Sherman, E.A., et al. A homozygous missense mutation in HERC2 associated with global developmental delay and autism spectrum disorder. Hum. Mutat. 33 (2012), 1639–1646.
Harlalka, G.V., Baple, E.L., Cross, H., Kuhnle, S., Cubillos-Rojas, M., Matentzoglu, K., et al. Mutation of HERC2 causes developmental delay with Angelman-like features. J. Med. Genet. 50 (2013), 65–73.
Morice-Picard, F., Benard, G., Rezvani, H.R., Lasseaux, E., Simon, D., Moutton, S., et al. Complete loss of function of the ubiquitin ligase HERC2 causes a severe neurodevelopmental phenotype. Eur. J. Hum. Genet. 25 (2016), 52–58.
Thatcher, K.N., Peddada, S., Yasui, D.H., Lasalle, J.M., Homologous pairing of 15q11–13 imprinted domains in brain is developmentally regulated but deficient in Rett and autism samples. Hum. Mol. Genet. 14 (2005), 785–797.
Hogart, A., Nagarajan, R.P., Patzel, K.A., Yasui, D.H., Lasalle, J.M., 15q11–13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Hum. Mol. Genet. 16 (2007), 691–703.
Yasui, D.H., Scoles, H.A., Horike, S., Meguro-Horike, M., Dunaway, K.W., Schroeder, D.I., et al. 15q11.2–13.3 chromatin analysis reveals epigenetic regulation of CHRNA7 with deficiencies in Rett and autism brain. Hum. Mol. Genet. 20 (2011), 4311–4323.
Dreze, M., Monachello, D., Lurin, C., Cusick, M.E., Hill, D.E., Vidal, M., et al. High-quality binary interactome mapping. Methods Enzymol. 470 (2010), 281–315.
Zhang, J., Lautar, S., A yeast three-hybrid method to clone ternary protein complex components. Anal. Biochem. 242 (1996), 68–72.
Sowa, M.E., Bennett, E.J., Gygi, S.P., Harper, J.W., Defining the human deubiquitinating enzyme interaction landscape. Cell 138 (2009), 389–403.
Luck, K., Sheynkman, G.M., Zhang, I., Proteome-Scale Human, Vidal M., Interactomics. Trends Biochem. Sci. 42 (2017), 342–354.
Mortensen, F., Schneider, D., Barbic, T., Sladewska-Marquardt, A., Kuhnle, S., Marx, A., et al. Role of ubiquitin and the HPV E6 oncoprotein in E6AP-mediated ubiquitination. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 9872–9877.
Huttlin, E.L., Bruckner, R.J., Paulo, J.A., Cannon, J.R., Ting, L., Baltier, K., et al. Architecture of the human interactome defines protein communities and disease networks. Nature 545 (2017), 505–509.
Hein, M.Y., Hubner, N.C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163 (2015), 712–723.
Wan, C., Borgeson, B., Phanse, S., Tu, F., Drew, K., Clark, G., et al. Panorama of ancient metazoan macromolecular complexes. Nature 525 (2015), 339–344.
Rolland, T., Tasan, M., Charloteaux, B., Pevzner, S.J., Zhong, Q., Sahni, N., et al. A proteome-scale map of the human interactome network. Cell 159 (2014), 1212–1226.
Yang, X., Coulombe-Huntington, J., Kang, S., Sheynkman, G.M., Hao, T., Richardson, A., et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164 (2016), 805–817.
Sahni, N., Yi, S., Taipale, M., Fuxman Bass, J.I., Coulombe-Huntington, J., Yang, F., et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161 (2015), 647–660.
Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 437 (2005), 1173–1178.
Venkatesan, K., Rual, J.F., Vazquez, A., Stelzl, U., Lemmens, I., Hirozane-Kishikawa, T., et al. An empirical framework for binary interactome mapping. Nat. Methods 6 (2009), 83–90.
Yu, H., Tardivo, L., Tam, S., Weiner, E., Gebreab, F., Fan, C., et al. Next-generation sequencing to generate interactome datasets. Nat. Methods 8 (2011), 478–480.
Al-Hakim, A.K., Bashkurov, M., Gingras, A.C., Durocher, D., Pelletier, L., Interaction proteomics identify NEURL4 and the HECT E3 ligase HERC2 as novel modulators of centrosome architecture. Mol. Cell. Proteomics, 11, 2012, M111.014233.
Li, J., Kim, S., Kobayashi, T., Liang, F.X., Korzeniewski, N., Duensing, S., et al. Neurl4, a novel daughter centriole protein, prevents formation of ectopic microtubule organizing centres. EMBO Rep. 13 (2012), 547–553.
Schumacher, S., Laass, K., Kant, S., Shi, Y., Visel, A., Gruber, A.D., et al. Scaffolding by ERK3 regulates MK5 in development. EMBO J. 23 (2004), 4770–4779.
Seternes, O.M., Mikalsen, T., Johansen, B., Michaelsen, E., Armstrong, C.G., Morrice, N.A., et al. Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. EMBO J. 23 (2004), 4780–4791.
Dindot, S.V., Antalffy, B.A., Bhattacharjee, M.B., Beaudet, A.L., The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum. Mol. Genet. 17 (2008), 111–118.
Gustin, R.M., Bichell, T.J., Bubser, M., Daily, J., Filonova, I., Mrelashvili, D., et al. Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. Neurobiol. Dis. 39 (2010), 283–291.
Wang, Y., Liu, X., Zhou, L., Duong, D., Bhuripanyo, K., Zhao, B., et al. Identifying the ubiquitination targets of E6AP by orthogonal ubiquitin transfer. Nat. Commun., 8, 2017, 2232.
Holz, M.K., Ballif, B.A., Gygi, S.P., Blenis, J., mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123 (2005), 569–580.
Bar-Peled, L., Chantranupong, L., Cherniack, A.D., Chen, W.W., Ottina, K.A., Grabiner, B.C., et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340 (2013), 1100–1106.
Bridges, D., Ma, J.T., Park, S., Inoki, K., Weisman, L.S., Saltiel, A.R., Phosphatidylinositol 3,5-bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1. Mol. Biol. Cell 23 (2012), 2955–2962.
Al-Mahdi, R., Babteen, N., Thillai, K., Holt, M., Johansen, B., Wetting, H.L., et al. A novel role for atypical MAPK kinase ERK3 in regulating breast cancer cell morphology and migration. Cell Adhes. Migr. 9 (2015), 483–494.
Wang, W., Bian, K., Vallabhaneni, S., Zhang, B., Wu, R.C., O'Malley, B.W., et al. ERK3 promotes endothelial cell functions by upregulating SRC-3/SP1-mediated VEGFR2 expression. J. Cell. Physiol. 229 (2014), 1529–1537.
Long, W., Foulds, C.E., Qin, J., Liu, J., Ding, C., Lonard, D.M., et al. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion. J. Clin. Invest. 122 (2012), 1869–1880.
Singhmar, P., Kumar, A., Angelman syndrome protein UBE3A interacts with primary microcephaly protein ASPM, localizes to centrosomes and regulates chromosome segregation. PLoS One, 6, 2011, e20397.
Boateng, L.R., Cortesio, C.L., Huttenlocher, A., Src-mediated phosphorylation of mammalian Abp1 (DBNL) regulates podosome rosette formation in transformed fibroblasts. J. Cell Sci. 125 (2012), 1329–1341.
Fenster, S.D., Kessels, M.M., Qualmann, B., Chung, W.J., Nash, J., Gundelfinger, E.D., et al. Interactions between Piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones. J. Biol. Chem. 278 (2003), 20268–20277.
Haag, N., Schwintzer, L., Ahuja, R., Koch, N., Grimm, J., Heuer, H., et al. The actin nucleator Cobl is crucial for Purkinje cell development and works in close conjunction with the F-actin binding protein Abp1. J. Neurosci. 32 (2012), 17842–17856.
Haeckel, A., Ahuja, R., Gundelfinger, E.D., Qualmann, B., Kessels, M.M., The actin-binding protein Abp1 controls dendritic spine morphology and is important for spine head and synapse formation. J. Neurosci. 28 (2008), 10031–10044.
Kessels, M.M., Engqvist-Goldstein, A.E., Drubin, D.G., Qualmann, B., Mammalian Abp1, a signal-responsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. J. Cell Biol. 153 (2001), 351–366.
Koch, N., Kobler, O., Thomas, U., Qualmann, B., Kessels, M.M., Terminal axonal arborization and synaptic bouton formation critically rely on abp1 and the arp2/3 complex. PLoS One, 9, 2014, e97692.
Pinyol, R., Haeckel, A., Ritter, A., Qualmann, B., Kessels, M.M., Regulation of N-WASP and the Arp2/3 complex by Abp1 controls neuronal morphology. PLoS One, 2, 2007, e400.
Qualmann, B., Boeckers, T.M., Jeromin, M., Gundelfinger, E.D., Kessels, M.M., Linkage of the actin cytoskeleton to the postsynaptic density via direct interactions of Abp1 with the ProSAP/Shank family. J. Neurosci. 24 (2004), 2481–2495.
Marshall, R.S., Li, F., Gemperline, D.C., Book, A.J., Vierstra, R.D., Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell 58 (2015), 1053–1066.
Cohen-Kaplan, V., Livneh, I., Avni, N., Fabre, B., Ziv, T., Kwon, Y.T., et al. p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc. Natl. Acad. Sci. U. S. A., 113, 2016, E7490-E9.
Puram, S.V., Kim, A.H., Park, H.Y., Anckar, J., Bonni, A., The ubiquitin receptor S5a/Rpn10 links centrosomal proteasomes with dendrite development in the mammalian brain. Cell Rep. 4 (2013), 19–30.
Tan, W.H., Bacino, C.A., Skinner, S.A., Anselm, I., Barbieri-Welge, R., Bauer-Carlin, A., et al. Angelman syndrome: mutations influence features in early childhood. Am. J. Med. Genet. A 155A (2011), 81–90.
Bansal, P.K., Abdulle, R., Kitagawa, K., Sgt1 associates with Hsp90: an initial step of assembly of the core kinetochore complex. Mol. Cell. Biol. 24 (2004), 8069–8079.
Kitagawa, K., Skowyra, D., Elledge, S.J., Harper, J.W., Hieter, P., SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol. Cell 4 (1999), 21–33.
Martins, T., Maia, A.F., Steffensen, S., Sunkel, C.E., Sgt1, a co-chaperone of Hsp90 stabilizes Polo and is required for centrosome organization. EMBO J. 28 (2009), 234–247.
Steensgaard, P., Garre, M., Muradore, I., Transidico, P., Nigg, E.A., Kitagawa, K., et al. Sgt1 is required for human kinetochore assembly. EMBO Rep. 5 (2004), 626–631.
Duensing, S., Lee, L.Y., Duensing, A., Basile, J., Piboonniyom, S., Gonzalez, S., et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc. Natl. Acad. Sci. U. S. A. 97 (2000), 10002–10007.
Duensing, S., Munger, K., The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res. 62 (2002), 7075–7082.
Schaeffer, A.J., Nguyen, M., Liem, A., Lee, D., Montagna, C., Lambert, P.F., et al. E6 and E7 oncoproteins induce distinct patterns of chromosomal aneuploidy in skin tumors from transgenic mice. Cancer Res. 64 (2004), 538–546.
Bochman, M.L., Schwacha, A., The Mcm2–7 complex has in vitro helicase activity. Mol. Cell 31 (2008), 287–293.
Izawa, N., Wu, W., Sato, K., Nishikawa, H., Kato, A., Boku, N., et al. HERC2 interacts with Claspin and regulates DNA origin firing and replication fork progression. Cancer Res. 71 (2011), 5621–5625.
Deegan, T.D., Diffley, J.F., MCM: one ring to rule them all. Curr. Opin. Struct. Biol. 37 (2016), 145–151.
Hyrien, O., How MCM loading and spreading specify eukaryotic DNA replication initiation sites [version 1; referees: 4 approved]. 2016.
Prakash, S., Johnson, R.E., Prakash, L., Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74 (2005), 317–353.
Bekker-Jensen, S., Rendtlew Danielsen, J., Fugger, K., Gromova, I., Nerstedt, A., Lukas, C., et al. HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat. Cell Biol. 12:80-6 (2010), 1–12.
Mohiuddin, Kobayashi S., Keka, I.S., Guilbaud, G., Sale, J., Narita, T., et al. The role of HERC2 and RNF8 ubiquitin E3 ligases in the promotion of translesion DNA synthesis in the chicken DT40 cell line. DNA Repair (Amst) 40 (2016), 67–76.
Jang, M.K., Shen, K., McBride, A.A., Papillomavirus genomes associate with BRD4 to replicate at fragile sites in the host genome. PLoS Pathog., 10, 2014, e1004117.
Franchitto, A., Genome instability at common fragile sites: searching for the cause of their instability. Biomed. Res. Int., 2013, 2013, 730714.
Chen, B., Simpson, D.A., Zhou, Y., Mitra, A., Mitchell, D.L., Cordeiro-Stone, M., et al. Human papilloma virus type16 E6 deregulates CHK1 and sensitizes human fibroblasts to environmental carcinogens independently of its effect on p53. Cell Cycle 8 (2009), 1775–1787.
Park, R.B., Androphy, E.J., Genetic analysis of high-risk e6 in episomal maintenance of human papillomavirus genomes in primary human keratinocytes. J. Virol. 76 (2002), 11359–11364.
Thomas, J.T., Hubert, W.G., Ruesch, M.N., Laimins, L.A., Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc. Natl. Acad. Sci. U. S. A. 96 (1999), 8449–8454.
Wang, H.K., Duffy, A.A., Broker, T.R., Chow, L.T., Robust production and passaging of infectious HPV in squamous epithelium of primary human keratinocytes. Genes Dev. 23 (2009), 181–194.
Nawaz, Z., Lonard, D.M., Smith, C.L., Lev-Lehman, E., Tsai, S.Y., Tsai, M.J., et al. The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol. Cell. Biol. 19 (1999), 1182–1189.
Kuhnle, S., Mothes, B., Matentzoglu, K., Scheffner, M., Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 8888–8893.
Greer, P.L., Hanayama, R., Bloodgood, B.L., Mardinly, A.R., Lipton, D.M., Flavell, S.W., et al. The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140 (2010), 704–716.
Yankulov, K., Todorov, I., Romanowski, P., Licatalosi, D., Cilli, K., McCracken, S., et al. MCM proteins are associated with RNA polymerase II holoenzyme. Mol. Cell. Biol. 19 (1999), 6154–6163.
Thompson, L.H., Carrano, A.V., Sato, K., Salazar, E.P., White, B.F., Stewart, S.A., et al. Identification of nucleotide-excision-repair genes on human chromosomes 2 and 13 by functional complementation in hamster-human hybrids. Somat. Cell Mol. Genet. 13 (1987), 539–551.
Drapkin, R., Reardon, J.T., Ansari, A., Huang, J.C., Zawel, L., Ahn, K., et al. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 368 (1994), 769–772.
Catoe, H.W., Nawaz, Z., E6-AP facilitates efficient transcription at estrogen responsive promoters through recruitment of chromatin modifiers. Steroids 76 (2011), 897–902.
Richardson, A.J., Ross, M.A., Fatty acid metabolism in neurodevelopmental disorder: a new perspective on associations between attention-deficit/hyperactivity disorder, dyslexia, dyspraxia and the autistic spectrum. Prostaglandins Leukot. Essent. Fat. Acids 63 (2000), 1–9.
Clark-Taylor, T., Clark-Taylor, B.E., Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial beta-oxidation by long chain acyl-CoA dehydrogenase. Med. Hypotheses 62 (2004), 970–975.
Xie, Z., Jones, A., Deeney, J.T., Hur, S.K., Bankaitis, V.A., Inborn errors of long-chain fatty acid beta-oxidation link neural stem cell self-renewal to autism. Cell Rep. 14 (2016), 991–999.
Dibble, C.C., Manning, B.D., Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 15 (2013), 555–564.
Laplante, M., Sabatini, D.M., Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126 (2013), 1713–1719.
Laplante, M., Sabatini, D.M., mTOR signaling in growth control and disease. Cell 149 (2012), 274–293.
Costa-Mattioli, M., Monteggia, L.M., mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat. Neurosci. 16 (2013), 1537–1543.
Sun, J., Liu, Y., Tran, J., O'Neal, P., Baudry, M., Bi, X., mTORC1-S6K1 inhibition or mTORC2 activation improves hippocampal synaptic plasticity and learning in Angelman syndrome mice. Cell. Mol. Life Sci. 73 (2016), 4303–4314.
Spangle, J.M., Ghosh-Choudhury, N., Munger, K., Activation of cap-dependent translation by mucosal human papillomavirus E6 proteins is dependent on the integrity of the LXXLL binding motif. J. Virol. 86 (2012), 7466–7472.
Spangle, J.M., Munger, K., The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J. Virol. 84 (2010), 9398–9407.
Yashiro, K., Riday, T.T., Condon, K.H., Roberts, A.C., Bernardo, D.R., Prakash, R., et al. Ube3a is required for experience-dependent maturation of the neocortex. Nat. Neurosci. 12 (2009), 777–783.
Jiang, Y.H., Armstrong, D., Albrecht, U., Atkins, C.M., Noebels, J.L., Eichele, G., et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21 (1998), 799–811.
Bosch, M., Hayashi, Y., Structural pasticity of dendritic spines. Curr. Opin. Neurobiol. 22 (2012), 383–388.
Chazeau, A., Giannone, G., Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling. Cell. Mol. Life Sci. 73 (2016), 3053–3073.
Baudry, M., Kramar, E., Xu, X., Zadran, H., Moreno, S., Lynch, G., et al. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiol. Dis. 47 (2012), 210–215.
Zhang, Z., Yang, H., Wang, H., The histone H2A deubiquitinase USP16 interacts with HERC2 and fine-tunes cellular response to DNA damage. J. Biol. Chem. 289 (2014), 32883–32894.
Yuan, J., Luo, K., Deng, M., Li, Y., Yin, P., Gao, B., et al. HERC2-USP20 axis regulates DNA damage checkpoint through Claspin. Nucleic Acids Res., 42(21), 2014, 13110.
Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., Whitelaw, M.L., Bruick, R.K., FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16 (2002), 1466–1471.
Mahon, P.C., Hirota, K., Semenza, G.L., FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15 (2001), 2675–2686.
Coleman, M.L., McDonough, M.A., Hewitson, K.S., Coles, C., Mecinovic, J., Edelmann, M., et al. Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor. J. Biol. Chem. 282 (2007), 24027–24038.
Zheng, X., Linke, S., Dias, J.M., Zheng, X., Gradin, K., Wallis, T.P., et al. Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc. Natl. Acad. Sci. U. S. A. 105 (2008), 3368–3373.
Ben-Shushan, E., Feldman, E., Reubinoff, B.E., Notch signaling regulates motor neuron differentiation of human embryonic stem cells. Stem Cells 33 (2015), 403–415.
Faux, C.H., Turnley, A.M., Epa, R., Cappai, R., Interactions, Bartlett P.F., between fibroblast growth factors and Notch regulate neuronal differentiation. J. Neurosci. 21 (2001), 5587–5596.
Lassiter, R.N., Ball, M.K., Adams, J.S., Wright, B.T., Stark, M.R., Sensory neuron differentiation is regulated by notch signaling in the trigeminal placode. Dev. Biol. 344 (2010), 836–848.
Ohtsuka, T., Ishibashi, M., Gradwohl, G., Nakanishi, S., Guillemot, F., Kageyama, R., Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J. 18 (1999), 2196–2207.
Vernon, A.E., Movassagh, M., Horan, I., Wise, H., Ohnuma, S., Philpott, A., Notch targets the Cdk inhibitor Xic1 to regulate differentiation but not the cell cycle in neurons. EMBO Rep. 7 (2006), 643–648.
Wang, L., Chopp, M., Zhang, R.L., Zhang, L., Letourneau, Y., Feng, Y.F., et al. The Notch pathway mediates expansion of a progenitor pool and neuronal differentiation in adult neural progenitor cells after stroke. Neuroscience 158 (2009), 1356–1363.
Bonini, S.A., Ferrari-Toninelli, G., Uberti, D., Montinaro, M., Buizza, L., Lanni, C., et al. Nuclear factor kappaB-dependent neurite remodeling is mediated by Notch pathway. J. Neurosci. 31 (2011), 11697–11705.
Ferrari-Toninelli, G., Bonini, S.A., Uberti, D., Napolitano, F., Stante, M., Santoro, F., et al. Notch activation induces neurite remodeling and functional modifications in SH-SY5Y neuronal cells. Dev. Neurobiol. 69 (2009), 378–391.
Sestan, N., Artavanis-Tsakonas, S., Rakic, P., Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 286 (1999), 741–746.
Lefort, K., Dotto, G.P., Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Semin. Cancer Biol. 14 (2004), 374–386.
Nguyen, B.C., Lefort, K., Mandinova, A., Antonini, D., Devgan, V., Della Gatta, G., et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 20 (2006), 1028–1042.
Rangarajan, A., Talora, C., Okuyama, R., Nicolas, M., Mammucari, C., Oh, H., et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 20 (2001), 3427–3436.
Kawano, S., Morotomi, T., Toyono, T., Nakamura, N., Uchida, T., Ohishi, M., et al. Establishment of dental epithelial cell line (HAT-7) and the cell differentiation dependent on Notch signaling pathway. Connect. Tissue Res. 43 (2002), 409–412.
Wang, X.D., Leow, C.C., Zha, J., Tang, Z., Modrusan, Z., Radtke, F., et al. Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation. Dev. Biol. 290 (2006), 66–80.
Zecchini, V., Domaschenz, R., Winton, D., Jones, P., Notch signaling regulates the differentiation of post-mitotic intestinal epithelial cells. Genes Dev. 19 (2005), 1686–1691.
Maliekal, T.T., Bajaj, J., Giri, V., Subramanyam, D., Krishna, S., The role of Notch signaling in human cervical cancer: implications for solid tumors. Oncogene 27 (2008), 5110–5114.
Rong, C., Feng, Y., Ye, Z., Notch is a critical regulator in cervical cancer by regulating Numb splicing. Oncol. Lett. 13 (2017), 2465–2470.
Chakrabarti, O., Veeraraghavalu, K., Tergaonkar, V., Liu, Y., Androphy, E.J., Stanley, M.A., et al. Human papillomavirus type 16 E6 amino acid 83 variants enhance E6-mediated MAPK signaling and differentially regulate tumorigenesis by notch signaling and oncogenic Ras. J. Virol. 78 (2004), 5934–5945.
Weijzen, S., Zlobin, A., Braid, M., Miele, L., Kast, W.M., HPV16 E6 and E7 oncoproteins regulate Notch-1 expression and cooperate to induce transformation. J. Cell. Physiol. 194 (2003), 356–362.
Janke, K., Brockmeier, U., Kuhlmann, K., Eisenacher, M., Nolde, J., Meyer, H.E., et al. Factor inhibiting HIF-1 (FIH-1) modulates protein interactions of apoptosis-stimulating p53 binding protein 2 (ASPP2). J. Cell Sci. 126 (2013), 2629–2640.
Bingol, B., Schuman, E.M., Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441 (2006), 1144–1148.
Bingol, B., Wang, C.F., Arnott, D., Cheng, D., Peng, J., Sheng, M., Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140 (2010), 567–578.
Ferreira, J.S., Schmidt, J., Rio, P., Aguas, R., Rooyakkers, A., Li, K.W., et al. GluN2B-containing NMDA receptors regulate AMPA receptor traffic through anchoring of the synaptic proteasome. J. Neurosci. 35 (2015), 8462–8479.
Pilli, M., Arko-Mensah, J., Ponpuak, M., Roberts, E., Master, S., Mandell, M.A., et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37 (2012), 223–234.
Wild, P., Farhan, H., McEwan, D.G., Wagner, S., Rogov, V.V., Brady, N.R., et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333 (2011), 228–233.
Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4 (2003), 491–496.
McWhirter, S.M., Fitzgerald, K.A., Rosains, J., Rowe, D.C., Golenbock, D.T., Maniatis, T., IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc. Natl. Acad. Sci. U. S. A. 101 (2004), 233–238.
Freischmidt, A., Wieland, T., Richter, B., Ruf, W., Schaeffer, V., Muller, K., et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18 (2015), 631–636.
Pottier, C., Bieniek, K.F., Finch, N., van de Vorst, M., Baker, M., Perkersen, R., et al. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol. 130 (2015), 77–92.
Bai, X., Karasmanis, E.P., Spiliotis, E.T., Septin 9 interacts with kinesin KIF17 and interferes with the mechanism of NMDA receptor cargo binding and transport. Mol. Biol. Cell 27 (2016), 897–906.
Ghiretti, A.E., Thies, E., Tokito, M.K., Lin, T., Ostap, E.M., Kneussel, M., et al. Activity-dependent regulation of distinct transport and cytoskeletal remodeling functions of the dendritic kinesin KIF21B. Neuron 92 (2016), 857–872.
McVicker, D.P., Awe, A.M., Richters, K.E., Wilson, R.L., Cowdrey, D.A., Hu, X., et al. Transport of a kinesin-cargo pair along microtubules into dendritic spines undergoing synaptic plasticity. Nat. Commun., 7, 2016, 12741.
Niwa, S., Lipton, D.M., Morikawa, M., Zhao, C., Hirokawa, N., Lu, H., et al. Autoinhibition of a neuronal kinesin UNC-104/KIF1A regulates the size and density of synapses. Cell Rep. 16 (2016), 2129–2141.
Willemsen, M.H., Ba, W., Wissink-Lindhout, W.M., de Brouwer, A.P., Haas, S.A., Bienek, M., et al. Involvement of the kinesin family members KIF4A and KIF5C in intellectual disability and synaptic function. J. Med. Genet. 51 (2014), 487–494.
Guillaud, L., Wong, R., Hirokawa, N., Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nat. Cell Biol. 10 (2008), 19–29.
Hoerndli, F.J., Wang, R., Mellem, J.E., Kallarackal, A., Brockie, P.J., Thacker, C., et al. Neuronal activity and CaMKII regulate kinesin-mediated transport of synaptic AMPARs. Neuron 86 (2015), 457–474.
Kumar, J., Yu, H., Sheetz, M.P., Kinectin, an essential anchor for kinesin-driven vesicle motility. Science 267 (1995), 1834–1837.
Toyoshima, I., Yu, H., Steuer, E.R., Sheetz, M.P., Kinectin, a major kinesin-binding protein on ER. J. Cell Biol. 118 (1992), 1121–1131.
Yu, H., Nicchitta, C.V., Kumar, J., Becker, M., Toyoshima, I., Sheetz, M.P., Characterization of kinectin, a kinesin-binding protein: primary sequence and N-terminal topogenic signal analysis. Mol. Biol. Cell 6 (1995), 171–183.
Chai, S., Xu, X., Wang, Y., Zhou, Y., Zhang, C., Yang, Y., et al. Ca2 +/calmodulin-dependent protein kinase IIgamma enhances stem-like traits and tumorigenicity of lung cancer cells. Oncotarget 6 (2015), 16069–16083.
Britschgi, A., Bill, A., Brinkhaus, H., Rothwell, C., Clay, I., Duss, S., et al. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), E1026–34.
Wang, T., Guo, S., Liu, Z., Wu, L., Li, M., Yang, J., et al. CAMK2N1 inhibits prostate cancer progression through androgen receptor-dependent signaling. Oncotarget 5 (2014), 10293–10306.
Wang, C., Li, N., Liu, X., Zheng, Y., Cao, X., A novel endogenous human CaMKII inhibitory protein suppresses tumor growth by inducing cell cycle arrest via p27 stabilization. J. Biol. Chem. 283 (2008), 11565–11574.
Tagwerker, C., Flick, K., Cui, M., Guerrero, C., Dou, Y., Auer, B., et al. A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking. Mol. Cell. Proteomics 5 (2006), 737–748.
Tagwerker, C., Zhang, H., Wang, X., Larsen, L.S., Lathrop, R.H., Hatfield, G.W., et al. HB tag modules for PCR-based gene tagging and tandem affinity purification in Saccharomyces cerevisiae. Yeast 23 (2006), 623–632.
Xicoy, H., Wieringa, B., Martens, G.J., The SH-SY5Y cell line in Parkinson's disease research: a systematic review. Mol. Neurodegener., 12, 2017, 10.
Behrends, C., Sowa, M.E., Gygi, S.P., Harper, J.W., Network organization of the human autophagy system. Nature 466 (2010), 68–76.
Yachie, N., Petsalaki, E., Mellor, J.C., Weile, J., Jacob, Y., Verby, M., et al. Pooled-matrix protein interaction screens using Barcode Fusion Genetics. Mol. Syst. Biol., 12, 2016, 863.
Gal, J., Kuang, L., Barnett, K.R., Zhu, B.Z., Shissler, S.C., Korotkov, K.V., et al. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics. Acta Neuropathol. 132 (2016), 563–576.
Csárdi GaN, T., The igraph software package for complex network research. InterJ. Complex Syst., 1695, 2006.
Svd, Walt, Colbert, S.C., Varoquaux, G., The NumPy Array: a structure for efficient numerical computation. Comput. Sci. Eng. 13 (2011), 22–30.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13 (2003), 2498–2504.
Kluyver, T., Ragan-Kelley, B., Perez, F., Granger, B., Bussonnier, M., Frederic, J., et al. Jupyter Notebooks—a publishing format for reproducible computational workflows. 2016, Ios Press, Amsterdam.
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25 (2000), 25–29.
Berriz, G.F., King, O.D., Bryant, B., Sander, C., Roth, F.P., Characterizing gene sets with FuncAssociate. Bioinformatics 19 (2003), 2502–2504.
Bateman, A., Martin, M.J., O'Donovan, C., Magrane, M., Alpi, E., Antunes, R., et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res., 45, 2017, D158-D69.
Yates, A., Akanni, W., Amode, M.R., Barrell, D., Billis, K., Carvalho-Silva, D., et al. Ensembl 2016. Nucleic Acids Res. 44 (2016), D710–6.
Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter, F., et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42 (2014), D358–63.
Viger, F., Latapy, M., Efficient and simple generation of random simple connected graphs with prescribed degree sequence. Wang, L., (eds.) Computing and Combinatorics: 11th Annual International Conference, COCOON 2005 Kunming, China, August 16–19, 2005 Proceedings, 2005, Springer Berlin Heidelberg, Berlin, Heidelberg, 440–449.
Berriz, G.F., Beaver, J.E., Cenik, C., Tasan, M., Roth, F.P., Next generation software for functional trend analysis. Bioinformatics 25 (2009), 3043–3044.